搜索资源列表
快速图像角点匹配过程演示
- 快速图像角点匹配的过程演示的flash文件-Fast Image Matching corner of the flash demo document
SAR-image-registration
- matching algorithm based on SIFT algorithm, extract feature points in use of Harris corner detection algorithm-matching algorithm based on SIFT algorithm, extract feature points in use of Harris corner detection algorithm
sift-based-on-edge-corner
- SIFT 由特征提取,特征描述符描述和特征匹配 3 部分构成,该算子特征提取数目庞大,建立特征描述符运算 量高,导致算法效率低。提出了一种 SEC( SIFT-Edge-Corner) 算法,在图像尺度空间提取角点代替 SIFT 特征点,并根 据角点是边缘曲率极值理论,预先采用 Canny 算子得到高斯边缘图像金字塔,再提取角点并进行尺度选择。实验结 果表明: 该算法在保障高准确率的前提下大幅度提高特征提取效率-By the SIFT feature extraction, fea
matching
- 本文主要致力于图像配准和拼接算法的研究,一方面以Harris算法为基础,提出了一种基于圆形邻域增强的角点配准算法,而另一方面则根据图像配准精度需求及庞大图像规模,将图像的拼接算法改进,提出基于尺度不变特征一种的图像拼接算法。-The thesis focuses on image registration and stitching algorithm, on the one hand to the Harris algorithm, proposed corner registration a
opencv-doc
- 图像数据操作(内存分配与释放,图像复制、设定和转换) 图像/视频的输入输出(支持文件或摄像头的输入,图像/视频文件的输出) 矩阵/向量数据操作及线性代数运算(矩阵乘积、矩阵方程求解、特征值、奇异值分解) 支持多种动态数据结构(链表、队列、数据集、树、图) 基本图像处理(去噪、边缘检测、角点检测、采样与插值、色彩变换、形态学处理、直方图、图像金字塔结构) 结构分析(连通域/分支、轮廓处理、距离转换、图像矩、模板匹配、霍夫变换、多项式逼近、曲线拟合、椭圆拟合、狄劳尼三角化)
sift_method
- SIFT(Scale-invariant feature transform)是一种检测局部特征的算法,该算法通过求一幅图中的特征点(interest points,or corner points)及其有关scale 和 orientation 的描述子得到特征并进行图像特征点匹配,获得了良好效果-SIFT (Scale-invariant feature transform) is a local feature detection algorithm by finding a pictur
Harris-detection-amd-matching-corner
- 使用Harris角点检测,然后使用RANSA算法进行相应的match匹配算法,主要应用在计算机视觉以及opencv中-Harris corner detection and match corresponding corner points by match algorithm and RANSA algorithm in computer vision and openCV