搜索资源列表
ear5.rar
- IEEE上关于人耳图像识别的论文:使用改进的非负矩阵分解的人耳识别,Ear Recognition using Improved Non-Negative Matrix Factorization
LU
- 文档详细介绍了矩阵的LU分解,对于C编程者来说,是很好的理论知识的储备。-Document details the LU decomposition of the matrix for C programmers, it is a good theoretical knowledge of the reserves.
Novel-approach-for-texture
- 为提高基于内容的图像检索系统中纹理特征提取的有效性,提出了又一种纹理图像检索方法。该方法 利用非下采样 Contourlet变换对图像进行分解, 提取不同子带和不同方向变换系数矩阵的均值和方差为特征向量, 作 为数据库中纹理图像的索引,并利用两种不同的相似度函数计算图像之间的相似度,建立了一套基于示例查询图像 的纹理图像检索系统。实验结果表明,与小波包等特征提取方法相比, 该方法不仅能降低特征向量维数,而且能取得 更高的检索准确率和检索速度。-To i ncrease t he
Feature-fusion-based-on-NMF-and-NSCT
- 一种基于非负矩阵分解和红外特征的图像融 合方法,实现源图像的目标区域和背景区域分别融合。-A proposal method based on non-negative factorization (NMF) and infrared feature is presented for infrared and visual images fusion, which fuses the target region and background respectively .
61
- 提出了一种结合SVD的小波变换方法,对其在外弹道测量数据中的野值剔除进行了研究。对观测数据进行小波分解,将小波分解后的近似分量和细节分量组合实现相空间重构,作为SVD方法的输入观测矩阵,根据奇异 熵增量准则,对奇异值进行筛选,根据SVD逆变换重构原信号。这一方法克服了Hankel矩阵相空间构建方法数据 端点失真问题。以小波分解后分量重构的相空间可以满足正交性,进一步提高了SVD进行数据降噪和野值检测的精度。仿真数据和试验数据处理结果证明了这一方法的有效性。-Proposed a meth
64
- 在简单介绍WH-800型离心机基本结构及工作原理的基础上, 介绍了基于重构吸引子轨迹矩阵的奇异值分解技术,并引入自相关函数对现有奇异值分解技术加以改进. 通过对现场实测故障信号的分析,表 明改进的奇异值分解技术具有很好的降噪效果,能在强噪声背景环境下准确提取设备的故障特征信号, 为离心机的故障诊断提供了一种新的思路.-After a brief introduction WH-800 centrifuge basic structure and working principle, base
T3
- 极化SAR图像分类数据,数据为T矩阵,为原始数据部分图像,包括free分解后数据以及各分量数据-Polarization SAR image classification data, data for the T matrix, part of the image to the original data, including the breakdown of free data and each component of the data
LowRankMatric
- 本文档主要介绍低秩矩阵分解的理论与应用,原作者为马毅等人。-this file mainly introduce low-rank decompostion theroy and its application ,which was created by Ma Yi etc,.
SLAM
- 本文研究了基于多传感器组合导航方法的SLAM,由于移动机器人无法通过单个传 感器得到可靠的信息,采用多传感器组合导航的方法可以很好的解决这个问题。本文用单个 CCD摄像头和里程计组合进行SLAM研究,并得到更准确的机器人位姿信息。首先用SIFT 算法对不同图像进行特征提取和匹配,得到本质矩阵,对它进行分解,可得到机器人的旋转 矩阵和平移向量(和实际相差一个比例因子)。然后,将它与里程计信息结合,得到机器人的 位姿。在此基础上,可以得到特征点在当前摄像机坐标系中的三维坐标,即创