搜索资源列表
Image-Hashing-based-on-Human-Visual-System
- 提出一种基于视觉特性的图像摘要算法,增大人眼敏感的频域系数在计算图像Hash时的权重,使得图像Hash更好地体现视觉特征,并提高鲁棒性。将原始图像的分块DCT系数乘以若干由密钥控制生成的伪随机矩阵,再对计算的结果进行基于分块的Watson人眼视觉特性处理,最后进行量化判决产生固定长度的图像Hash序列。本算法比未采用视觉特性的算法相比,提高了对JPEG压缩和高斯滤波的鲁棒性。图像摘要序列由密钥控制生成,具有安全性。
Advances.of.Research.in.Independent.Component.Anal
- :介绍了独立成分分析(ICA)的基本模型及其假设、含混性、非高斯性度量和通用求解过程。讨论了目前ICA 的几个研究方向的发展现状和面临的问题,分析了ICA 基本模型和几种扩展模型的求解算法,包括盲反卷积、卷积混和的盲分离、非线性瞬时混合的盲分离。提出了ICA 未来理论和应用研究中的开放课题。
stauffer-mog-
- stauffer的经典的混合高斯模型算法描述,适合做行为检测的人使用。-stauffer the classical Gaussian mixture model algorithm descr iption, suitable for people who use behavior detection.
DataMining3rd
- 评测数据在去掉停用词的 分类过程开放测试中,引入Good-Turing算法的分类性能比Laplace原则提高了3·05 ,比Lidstone方法提高 1·00 .而在交叉熵选择特征词的算法中,增加Good-Turing的贝叶斯分类方法可比最大熵分类性能高95 .通过这种数据平滑的算法,有助于克服因数据稀疏而引发的特征词缺失问题 -Evaluation data in the open test of the classification process to remove stop
YJYU_ICCIT2008_GMM
- 本文提供了利用高斯混合模型进行短时交通预测的算法描述,同时对于该算法的性能进行了评价。-This article provides a Gaussian mixture model for short-term traffic forecast algorithm descr iption, were evaluated for the performance of the algorithm.
负荷预测论文-使用GBDT算法
- 使用高斯和GBDT方法实现分级电力负荷预测,获得较好的效果,值得借鉴。