搜索资源列表
-
5下载:
已有的聚类集算法基本上都是非监督聚类集成算法,这样不能利用已知信息,使得聚类集成的准确性、鲁棒性和稳定性降低.把半监督学习和聚类集成结合起来,设计半监督聚类集成模型来克服这些缺点.主要工作包括:第一,设计了基于贝叶斯网络的半监督聚类集成(semi-supervised cluster ensemble,简称SCE)模型,并对模型用变分法进行了推理求解;第二,在此基础上,给出了EM(expectation maximization)框架下的具体算法;第三,从UCI(University of Ca
-
-
0下载:
In this paper, we propose a Bayesian methodology for
receiver function analysis, a key tool in determining the deep structure
of the Earth’s crust.We exploit the assumption of sparsity for
receiver functions to develop a Bayesian deconvolution
-
-
0下载:
This introduction to the expectation–maximization (EM) algorithm
provides an intuitive and mathematically rigorous understanding of
EM. Two of the most popular applications of EM are described in
detail: estimating Gaussian mixture models (GMMs),
-