搜索资源列表
三弯矩插值
- 三弯矩插值法 lagrange多项式插值 多项式最小二乘法 龙贝格积分法 分段线性插值 三转角插值 这些是数值分析中常用的集中经典方法,运用matlab展示出来!-three polynomial interpolation Hangzhou least squares polynomial interpolation Romberg integration subparagraph Line sex angle interpolation three interpola
三转角插值
- 三弯矩插值法 lagrange多项式插值 多项式最小二乘法 龙贝格积分法 分段线性插值 三转角插值 这些是数值分析中常用的集中经典方法,运用matlab展示出来!-three polynomial interpolation Hangzhou least squares polynomial interpolation Romberg integration subparagraph Line sex angle interpolation three interpola
lagrange多项式插值
- 三弯矩插值法 lagrange多项式插值 多项式最小二乘法 龙贝格积分法 分段线性插值 三转角插值 这些是数值分析中常用的集中经典方法,运用matlab展示出来!-three polynomial interpolation Hangzhou least squares polynomial interpolation Romberg integration subparagraph Line sex angle interpolation three interpola
分段线性插值
- 程序中存放结点值的数组和函数值的数组之所以命名为u和v,主要是为了防止和插值点x,及对应的函数值单元y想混淆-process node storage array and the value of the function of the array has named u and v is mainly to prevent and interpolation points x, and the corresponding function modules y trying to confuse
数值分析中的各种插值
- Lagrange插值+Newton插值+分段线性插值+复合梯形公式求定积分+列主元高斯+牛顿迭代+数据拟合+线性方程组迭代+++追赶法(1)
MATLAB实现拉格朗日、分段线性、三次样条三种插值的方法
- MATLAB实现拉格朗日、分段线性、三次样条三种插值的方法,改变节点的数目,对三种插值结果进行初步分析,MATLAB realization of Lagrange, piecewise linear, cubic spline interpolation in three ways, changing the number of nodes, interpolation of three preliminary analysis of the results
interpolation
- matlab各种插值算法应用实例,包括:拉格朗日插值、艾特肯插值法、牛顿插值法、 高斯插值法、 埃尔米特插值法、 分段埃尔米特插值法、样条插值、有理分式插值法、分片双线性插值、二元三点拉格朗日插值及分片双三次埃尔米特插值-a variety of interpolation algorithm matlab application examples include: Lagrange interpolation, Aitken interpolation, Newton interpolatio
math_chazhi
- 分段线性插值函数库(数值统计运算),基于 visual C++.-Piecewise linear interpolation function library (the value of statistical computing), based on visual C++.
main
- 分段线性插值,分段二次多项式插值,分段三次多项式插值,三次样条插值-Piecewise linear interpolation, sub-quadratic polynomial interpolation, sub-cubic polynomial interpolation, cubic spline interpolation
fit
- 用差分方程或数值微分解决简单的实际问题。 实验3 插值与数值积分 l 插值问题提法和求解思路 l Lagrange插值的原理和优缺点 l 分段线性和三次样条插值的原理和优缺点 l 用MATLAB实现分段线性和三次样条插值 l 梯形、辛普森积分公式的原理及MATLAB实现 l 数值积分公式的误差——收敛阶的概念 l 高斯积分公式 l 广义积分与多重积分 l 用插值和数值积分解决
analysis2
- 数值分析B计算实习作业二:分别用分段线性插值、分段二次多项式插值、 分段三次多项式插值和三次样条插值对所给的数据进行细化 -Numerical Analysis of B calculated internship operation II: piecewise linear interpolation, respectively, sub-quadratic polynomial interpolation, sub-cubic polynomial interpolation and
chazhi
- Language 求已知数据点的拉格朗日插值多项式 Atken 求已知数据点的艾特肯插值多项式 Newton 求已知数据点的均差形式的牛顿插值多项式 Newtonforward 求已知数据点的前向牛顿差分插值多项式 Newtonback 求已知数据点的后向牛顿差分插值多项式 Gauss 求已知数据点的高斯插值多项式 Hermite 求已知数据点的埃尔米特插值多项式 SubHermite 求已知数据点的分段三次埃尔米特插值多项式及其插值点处的值 SecSampl
asedf
- 分段线性插值法,用于数据采集计算的经典算法-Piecewise linear interpolation method for the calculation of the classical algorithm for data acquisition
work
- 数值计算中Lagrange插值,分段线性插值和三次样条插值源程序,可直接调用-Numerical calculation of Lagrange interpolation, piecewise linear interpolation and cubic spline interpolation source code can directly call the
ShuZhiFenXi4
- 单位圆的内插实现,里面有4种内插算法:拉格朗日插值、牛顿插值、分段线性插值、分段样条插值、以及插值误差范数估计-Interpolation to achieve the unit circle, which has four kinds of interpolation algorithms: Lagrange interpolation, piecewise-linear interpolation, sub-spline interpolation, as well as Norm inte
CalculateMethod_Krig
- C++实现的插值算法,迭代算法实现,包括样条插值,拉格朗日插值,分段线性插值等,希望对大家有所帮助-C++ implementation of the interpolation algorithm, iterative algorithms, including the spline interpolation, Lagrange interpolation, piecewise linear interpolation, we want to help
naknot
- 非扭结样条程序 分段线性插值函数 含例题-Non-kink-spline interpolation function piecewise linear process with examples
Interpolation
- 其中包括牛顿插值算法,分段线性插值算法,Larange算法和三次样条插值算法的源程序。还包括插值算法的报告一份。-Including the Newton interpolation algorithm, piecewise linear interpolation algorithm, Larange algorithm and cubic spline interpolation algorithm of the source. The report also includes an int
matlab插值与数据拟合
- 使用matlab的插值与数据拟合,含有插值原理,方程,插值方法有:拉格朗日多项式插值,分段线性插值,三次样条插值,最小二乘法,有多个实例(有源码、语句、结果、图像等)
插值runge现象
- 针对高次插值runge的学习代码,比较段数N不同时分段线性插值和三次样条插值,均给出误差曲线。(In view of the learning code of high order interpolation Runge, the number of comparison segments N does not simultaneously piecewise linear interpolation and three cubic spline interpolation, and the e