搜索资源列表
Kalman1960
- 卡尔曼1960年原著论文,英文原版,详细的理论推倒,具有较高的学术价值-Kalman 1960 original papers, the English original, detailed theoretical overturned, with high academic value
kalman_intro_chinese_V1.2
- 在1960年,卡尔曼出版了他最著名的论文,描述了一个对离散数据线性滤波问题的递归解决方法。从那以后,由于数字计算的进步,卡尔曼滤波器已经成为广泛研究和应用的主题,特别在自动化或协助导航领域。 卡尔曼滤波器是一系列方程式,提供了有效的计算(递归)方法去估计过程的状态,是一种以平方误差的均值达到最小的方式。滤波器在很多方面都很强大:它支持过去,现在,甚至将来状态的估计,而且当系统的确切性质未知时也可以做。 这篇论文的目的是对离散卡尔曼滤波器提供一个实际介绍。这次介绍包括对基本离散卡尔曼滤波器
kalman
- 1960年,卡尔曼发表了他著名的用递归方法解决离散数据线性滤波 问题的论文。从那以后,得益于数字计算技术的进步,卡尔曼滤波器 已成为推广研究和应用的主题,尤其是在自主或协助导航领域。-In 1960, Kalman published his famous recursive solution using discrete data linear filtering problem papers. Since then, figures to benefit from advances
Introduction_of_Kalman_Filter_Chinese
- 1960年,卡尔曼发表了他著名的用递归方法解决离散数据线性滤波问题的论文。从那以后,得益于数字计算技术的进步,卡尔曼滤波器已成为推广研究和应用的主题,尤其是在自主或协助导航领域。卡尔曼滤波器由一系列递归数学公式描述。它们提供了一种高效可计算的方法来估计过程的状态,并使估计均方误差最小。卡尔曼滤波器应用广泛且功能强大:它可以估计信号的过去和当前状态,甚至能估计将来的状态,即使并不知道模型的确切性质。这篇文章介绍了离散卡尔曼理论和实用方法,包括卡尔曼滤波器及其衍生:扩展卡尔曼滤波器的描述和讨论,并给
4
- 卡尔曼于1960年提出了离散系统线性滤波的递推求解方法即卡尔曼滤波算法。该滤波算法是基于线性最小平方法的、进行有效递推计算的一组数学方程式,算法功能强大,支持对过去、现在和将来状态的估算。-Kalman in 1960 proposed a linear discrete-time systems to solve recursive filtering methods for the Kalman filter. The filtering algorithm is based on the
4
- 卡尔曼于1960年提出了离散系统线性滤波的递推求解方法即卡尔曼滤波算法。该滤波算法是基于线性最小平方法的、进行有效递推计算的一组数学方程式,算法功能强大,支持对过去、现在和将来状态的估算。-Kalman in 1960 proposed a linear discrete-time systems to solve recursive filtering methods for the Kalman filter. The filtering algorithm is based on the
review-for-kalman-filter
- 国外大牛写的关于卡尔曼滤波文献综述,是研究卡尔曼滤波人员非常好的参考文献-review for kalman filter since 1960
Kalman-papper
- 卡尔曼1960年原版论文!卡尔曼滤波由此诞生!非常清晰哦!-Kalman 1960 original papers! Kalman filter was born! Very clear Oh!
Kalman
- 斯坦利·施密特(Stanley Schmidt)首次实现了卡尔曼滤波器。卡尔曼在NASA埃姆斯研究中心访问时,发现他的方法对于解决阿波罗计划的轨道预测很有用,后来阿波罗飞船的导航电脑使用了这种滤波器。 关于这种滤波器的论文由Swerling (1958), Kalman (1960)与 Kalman and Bucy (1961)发表。(A basic filtering algorithm)
Kalman filter
- 卡尔曼滤波(Kalman filtering)一种利用线性系统状态方程,通过系统输入输出观测数据,对系统状态进行最优估计的算法。由于观测数据中包括系统中的噪声和干扰的影响,所以最优估计也可看作是滤波过程。 斯坦利·施密特(Stanley Schmidt)首次实现了卡尔曼滤波器。卡尔曼在NASA埃姆斯研究中心访问时,发现他的方法对于解决阿波罗计划的轨道预测很有用,后来阿波罗飞船的导航电脑使用了这种滤波器。 关于这种滤波器的论文由Swerling (1958), Kalman (1960)与 Ka
P2_KalmanFilter_Example
- 卡尔曼滤波(Kalman filtering)一种利用线性系统状态方程,通过系统输入输出观测数据,对系统状态进行最优估计的算法。由于观测数据中包括系统中的噪声和干扰的影响,所以最优估计也可看作是滤波过程。 斯坦利·施密特(Stanley Schmidt)首次实现了卡尔曼滤波器。卡尔曼在NASA埃姆斯研究中心访问时,发现他的方法对于解决阿波罗计划的轨道预测很有用,后来阿波罗飞船的导航电脑使用了这种滤波器。 关于这种滤波器的论文由Swerling (1958), Kalman (1960)与 Ka
卡尔曼1960年博士论文
- 卡尔曼最原始的博士论文,对于卡尔曼滤波有详细的推导介绍,是卡尔曼滤波入门的经典之作!