搜索资源列表
最近邻法分类器演示
- 本程序是一个最近邻分类算法的演示程序,本程序完成了三种最近邻的演示并实现算法的分析-this procedure is a nearest neighbor classification algorithm the demo program, the completion of a three - Nearest Neighbor algorithm demonstration and analysis
NearestRecognation
- 程序实现了.net环境下,C++语言的手写数字识别,程序对手写数据进行了去边框处理,采用最近邻法进行了分类-achieved with the program. Net environment, the C language handwritten numeral recognition, procedures for handwritten data to the frame, using nearest neighbor method of classification
Classify_Homework
- 模式识别作业——用平均样本法,平均距离法,最近邻法和K近邻法进行分类-pattern recognition operations -- with the average sample, the average distance, nearest neighbor and K-nearest-neighbor classification
GeoTrans.灰度图像的各种操作源代码
- 数字图像处理中,灰度图像的放大、缩小,平移和旋转功能实现的源代码,分别采用最近邻插值法和双线性插值方式实现。,Digital image processing, the gray-scale image to enlarge, narrow, pan and rotate functions of the source code, respectively, using nearest neighbor interpolation and bilinear interpolation way.
2rar.rar
- 用matlab写的最近邻和K近邻法分类器,简单易懂,适合初学者,Written with matlab and K-NN nearest neighbor classifier, easy to understand for beginners
SiftANN
- 实现了SIFT特征点的提取和匹配功能,匹配算法使用的是ANN最相似最近邻居法。-Achieved a SIFT feature point extraction and matching, matching algorithm using ANN is most similar to nearest neighbor method.
Researchontheshapefeatureextractionandrecognition.
- 主分量分析(PCA ) 是统计学中分析数据的一种有效的方法, 可以将数据从高维数据空间变换到低维特征空间, 因而 可以用于数据的特征提取及压缩等方面。在该文的形状识别系统中, 用PCA 法提取图像的形状特征, 能够较好地满足识别 层的输入要求。在识别层研究了3 种识别方法: 最近邻法则、BP 网络及协同神经网络方法, 均取得了满意的实验效果。-Principal component analysis (PCA) is a statistical analysis of data in a
shuangxianxingchazhisuofangtuxiang
- 本实验采用双线形插值技术进行图像的缩放。该方法输出的像素值是它在输入图像中2*2邻域采样点的平均值,它根据某像素周围4个像素的灰度值在水平和垂直方向两个方向上对其插值。在进行图像缩放时,其考虑到了相邻近的像素点间的关系。这种平均算法具有放锯齿效果,创造出来的图像拥有平滑的边缘,锯齿难以察觉,所以相对于最近邻法,其的效果比较好。在进行程序设计时,程序的输入参数为图像矩阵和结果图像的水平和垂直方向的像素数,可以忽略混叠效应。在程序运行之后可以对其前的实验结果进行比较分析异同,进而更深刻的理解最近邻插
IDASimulation
- 本文针对SLAM数据关联中使用最为广泛的最近邻方法作了改进,利用特征估计位置与载体预测位置之间的欧氏距离计算代替了全部特征与每个量测之间的马氏距离计算,避免了大量的矩阵乘法计算。该算法简单易行,降低了算法的计算复杂度,有利于SLAM算法的实时执行,且关联效果与全局最近邻法相同-In this paper, SLAM data association in the most widely used methods of improving the nearest neighbor, using t
moshishibie
- 先用C-均值聚类算法程序,并用下列数据进行聚类分析。在确认编程正确后,采用蔡云龙书的附录B中表1的Iris数据进行聚类。然后使用近邻法的快速算法找出待分样本X(设X样本的4个分量x1=x2=x3=x4=6;子集数l=3)的最近邻节点和3-近邻节点及X与它们之间的距离。-First C-means clustering algorithm procedures and with the following data for cluster analysis. After confirming t
pcafacerecognition
- 基于主成分分析(PCA)的人脸识别系统 利用2D PCA算法求对训练集向量进行降维的降维矩阵,最近邻法测试对测试集识别的精度-pca face recognition
neib
- 资料分群与样式辨认中关于最近邻法则加速方法介绍-Data Clustering and Pattern Recognition
Nearestneighbor
- 模式识别问题最近邻算法的matlab实现,可以模拟实现最近邻法的核心,是一个不错的代码- Nearest neighbor algorithm for pattern recognition problem of matlab to achieve, can simulate the nearest neighbor method to achieve the core of the code is a good
nearest
- 模式识别问题最近邻算法的matlab实现,可以模拟实现最近邻法的核心,是一个不错的代码,nearest neighbor-Nearest-neighbor algorithm for pattern recognition problem of matlab implementation, can be simulated to achieve the core of the nearest neighbor method is a good code, nearest neighbor
ClassifyHomework
- 模式识别,用平均样本法、平均距离法、最近邻法、K近邻法进行分类。-Pattern recognition, with an average of the sample method, the average distance method, nearest neighbor, K-NN classification.
zuijinlinfenlei
- 我们使用MATLAB软件实现了人脸识别并统计其识别率。本实验采用PCA(主成分分析)方法,利用K-L变换和奇异值分解原理实现。并分别采用最近邻法分类器得出它们的成功率。-We use face recognition software and the MATLAB Statistics recognition rate. The present study, PCA (principal component analysis) method, using KL transform and sin
最近邻插值的实现
- 最近邻插值法nearest_neighbor是最简单的灰度值插值。也称作零阶插值,就是令变换后像素的灰度值等于距它最近的输入像素的灰度值。(Nearest neighbor interpolation method, nearest_neighbor is the simplest gray value interpolation. Also called zero order interpolation, that is, the gray value of the transformed p
NearestNeighbor
- 采用最近邻法对图像进行插值,进行n倍的缩放,有示例图片,有注释,可运行,欢迎交流。(Using the nearest neighbor method for image interpolation, n times zoom, there are examples of pictures, notes, can run, welcome exchanges.)
KNN_demon
- 最近邻法语k近邻法的例子,基于matlab平台,有助于初学者学习。(The recent example of the nearest neighbour approach to French K, based on the MATLAB platform, helps beginners to learn.)