搜索资源列表
IntrusionDetectionTechnologyBaseonSupportVectorMac
- 本论文将统计学习理论引入入侵检测领域,讨论了基于SVM方法的智能检测 策略,检测算法具有良好的推广能力.引入HVDM距离代替范数,改进了SVM的 RBF核函数定义,使之能够直接处理异构的网络连接信息 利用有保证的估计方法 来确定训练数据集规模,避免了依靠实验选择训练规模的盲目性 针对重复样本 和重要样本提出了样本加权的思路,降低了错分样本的可能 考虑到网络连接记 录的不同属性对检测结果贡献不一的事实,提出了特征选择与特征加权的方法, 进而得到一个更好的分类超平面,提高了检
FSASL-master
- 该方法通过计算核空间距离从而来对样本进行特征选择。(The method is used to select the features of the samples by calculating the distance of the nuclear space.)