搜索资源列表
第8章 数值积分
- 求某函数的定积分时,在多数情况下,被积函数的原函数很难用初等函数表达出来,因此能够借助微积分学的牛顿-莱布尼兹公式计算定积分的机会是不多的。另外,许多实际问题中的被积函数往往是列表函数或其他形式的非连续函数,对这类函数的定积分,也不能用不定积分方法求解。由于以上原因,数值积分的理论与方法一直是计算数学研究的基本课题。对微积分学作出杰出贡献的数学大师,如I.牛顿、L.欧拉、C.F.高斯、拉格朗日等人都在数值积分这个领域作出了各自的贡献,并奠定了这个分支的理论基础。(For a definite i
Program
- 格拉布斯准则 C#实现 剔除异常值 格拉布斯准则 格拉布斯准则是以正态分布为前提的,理论上较严谨,使用也方便。 某个测量值的残余误差的绝对值 |Vi |>Gg,则判断此值中有较大误差,应以剔除,此即格拉布斯准则。(Grab J function C# grubbs criterion The Grab J criterion is based on the normal distribution, and it is more rigorous in theory and c