搜索资源列表
基于BP神经网络的厦门楼盘走势预测
- 本文基于BP神经网络应用于预测的原理,提出预测步骤及预测可行性,探讨建立基于BP神经网络的预测模型的关键技术,包括样本的选取与预处理、输入输出变量的选取、隐层节点数的确定、初始权值和阈值的选取、激活函数、训练算法与参数的选取,最后建立合理的网络模型;结合住宅市场的实际情况,建立两类BP 神经网络预测模型:基于时间序列的趋势预测模型以及基于影响因素的回归预测模型,即分别采用神经网络趋势预测和回归预测的思路,把住宅市场的供给、需求与房价的历年数据以及其影响因素的数据分别作为学习样本,建立预测模型,
net-timeserious
- 时间序列与神经网络结合的MATLAB程序-------不过一次只能预测一年的-Time Series and Neural Networks combination of MATLAB programs------- however, can only predict one-year ...
development-risk-prediction
- 本文基于BP神经网络应用于预测的原理,提出预测步骤及预测可行性,探讨建立基于BP神经网络的预测模型的关键技术,包括样本的选取与预处理、输入输出变量的选取、隐层节点数的确定、初始权值和阈值的选取、激活函数、训练算法与参数的选取,最后建立合理的网络模型;结合住宅市场的实际情况,建立两类BP 神经网络预测模型:基于时间序列的趋势预测模型以及基于影响因素的回归预测模型,即分别采用神经网络趋势预测和回归预测的思路,把住宅市场的供给、需求与房价的历年数据以及其影响因素的数据分别作为学习样本,建立预测模型,
pso-bp
- BP神经网络具有较强的非线性问题处理能力 是目前一 种 较 好 的 用 于 时 间 序 列 预 测 的 方 法 然 而 它 存 在 易 于 陷 入 局 部 极 小,针对地震预测的应用,用改进粒子群优化的BP算法对四川地区最大震级时间序列进行预测,通过训练 预 测 次 年 的 最 大 震 级 结 果,表明此方法优于未经优化的 BP算法具有良好的预测效果 -BP neural network has a strong nonlinear problems processing power is a
小波神经网络的时间序列预测-短时交通流量预测
- 本文采用小波神经网络进行交通流量预测,短时交通流量存在随机性和非线性因素,影响预测的准确性。传统预测模型难以反映交通流量变化特点,同时传统神经网络易陷入局部极小值,泛化能力差,交通流量预测精度低。为了提高短时交通流量预测精度,提出一种小波神经网络的短时交通流量预测模型。小波神经网络可以对短时交通流量随机性、不确定性进行局部分析,并进行非线性预测,验证了模型的有效性,进行了对比试验。验证结果表明,小波神经网络提高了短时交通流量预精度,预测结果更具应用价值。(In this paper, wavel
LSTM-Human-Activity-Recognition-master
- 与经典的方法相比,使用具有长时间记忆细胞的递归神经网络(RNN)不需要或几乎不需要特征工程。数据可以直接输入到神经网络中,神经网络就像一个黑匣子,可以正确地对问题进行建模。其他研究在活动识别数据集上可以使用大量的特征工程,这是一种与经典数据科学技术相结合的信号处理方法。这里的方法在数据预处理的数量方面非常简单(Compared with the classical methods, the recursive neural network (RNN) with long-term memory