搜索资源列表
SegmentationforImagesofVCH-F1BasednmprovedWatersed
- 针对分水岭算法存在的过分割问题以及VCH-F1切片图像的特点,提出一种能够有效消除局部极小值和噪声干扰的自动分割方法。首先比较彩色分量梯度图,选择分量图像的梯度信息,达到有效提取图像边缘信息的目的;然后提出基于多阈值分割的方法消除无效梯度信息;最后介绍了算法的步骤及结果。实验结果证明,通过该方法处理的梯度图像再进行分水岭算法处理,即使不进行区域合并也能达到很好的效果。
digital
- 用VC++实现印刷体数字的自动识别,首先,打开图像(256色);再次,进行归一化处理,点击“一次性处理”;最后,点击“R”或者使用菜单找到相应项来进行识别。识别的结果显示在屏幕上,同时也输出到文件result.txt中。 该系统的识别率一般情况下为90 。 此外,也可以单独对打开的图片一步一步进行图像预处理工作,但要注意,每一步工作只能执行一遍,而且要按顺序执行。 具体步骤为:“256色位图转为灰度图”-“灰度图二值化”-“去噪”-“倾斜校正”-“分割”-“标准化尺寸”-
image-segmentation
- 针对目前传统的枸杞分级主要采用人工方法, 费时费力且效率不高的缺点, 提出了一种基于机器视觉技术对枸杞 进行自动分类的方法。 采用数字图像处理技术对枸杞图像进行了预处理、 分割 , 从而提取枸杞的色泽、 大小及形状等特征 参数; 用 K-means 算法对特征进行聚类, 得到枸杞相应等级的基准; 根据聚类分析得到的基准采用最小距离分类器对枸杞 进行分级。 实验结果表明 , 该方法能够准确快速地对不同色泽和大小的枸杞进行分类。-Traditional wolfberry sorting
Grabcut_WITH_matlab
- 人机交互,Matlab 自带GUI进行编写,附带测试图像,运行完美(Human-computer interaction, Matlab comes with GUI to write, accompanied by testing images, running perfectly)