搜索资源列表
BP_xoBox
- 各种BP网络训练样本,如倒立摆,双螺旋线,双积分系统等-A variety of BP network training samples, such as the inverted pendulum, double helix, double-points system, etc.
invertedpendulum
- 倒立摆是一种复杂、时变、非线性、强耦合、自然不稳定的高阶系统,许多抽象的控制理论概念都可以通过倒立摆实验直观的表现出来。基于人工神经网络BP算法的倒立摆小车实验仿真训练模型,其倒立摆BP网络为4输入3层结构。输入层分别为小车的位移和速度、摆杆偏离铅垂线的角度和角速度。隐含层单元数16个。输出层设置为1个输出单元。输入层采用Tansig函数,隐含层采用Logsig函数,输出层采用Purelin函数。用Matlab 6.5数值计算软件对模型进行学习训练,并与线性反馈控制逻辑算法对比,表明倒立摆控制B
GA_BPNN
- 基于遗传算法和BP神经网络控制倒立摆的程序,用遗传算法优化神经网络权值阈值以达到更好的控制效果-Based on genetic algorithm and BP neural network control procedures for the inverted pendulum, with a genetic algorithm neural network weight threshold in order to achieve better control performance
MatlabPPID
- bp神经网络优化PID算法,单级倒立摆,神经网络 PID-bp neural network optimization PID algorithm, single inverted pendulum, neural network PID
20110619-1
- 针对BP神经网络存在的缺点,本文利用遗传算法能够收敛到全局最优解而 且遗传算法鲁棒性强的特点将遗传算法同神经网络结合起来,不仅能发挥神经网 络的泛化映射能力,而且使神经网络具有很快的收敛性以及较强的学习能力。为 了验证遗传算法优化BP神经网络的有效性,本文将此算法应用到直线一级倒立 摆的稳定控制中,同时利用UbVIEW语言界面开发能力强,并且数据输入、网 络通信、硬件控制简单的优点,制作了倒立摆的仿真控制和实时控制软件。仿真 研究表明,遗传算法优化BP神经网络的控制器设计
shengjingdaolibai
- BP神经网络根据LQR控制固高一级倒立摆,稳定控制及起摆控制-BP neural network based on solid LQR control an inverted pendulum stability control and from the pendulum control
BP倒立摆MATLAB例程
- 使用BP神经网络控制倒立摆,自己编写,MATLAB版本2015B