搜索资源列表
classify.rar
- 分级聚类程序,可实现最小距离聚类法、最大距离聚类法、平均距离聚类法。,Hierarchical clustering procedure can achieve the minimum distance clustering, maximum distance clustering method, the average distance clustering method.
GMM
- 实现混合高斯模型的聚类算法 利用最大似然估计和最大期望的方法来实现混合高斯模型-Gaussian mixture model to achieve clustering algorithm using the maximum likelihood estimation and the greatest way to achieve the desired mixed-Gaussian model
05-a
- 本文章描述了说话人识别中GMM模型中的聚类算法的研究-This article describes the GMM Speaker Recognition Model Clustering Algorithm
Kjunzhijulei
- 用于说话人识别初始化样本的聚类算法 调试成功-Speaker Recognition for initialization of the clustering algorithm samples
EMGMMSeg
- GMM-EM聚类程序,输入是一维数据,很有用的程序。-GMM-EM clustering procedure, very useful.
GMM_Purdue
- 基于混合高斯模型(GMM)的无监督聚类算法,希望对大家有帮助-Based on Gaussian mixture model (GMM) unsupervised clustering algorithm, I hope it would have help to you!
GMM-GMR-v2.0
- In statistics, a mixture model is a probabilistic model for density estimation using a mixture distribution. A mixture model can be regarded as a type of unsupervised learning or clustering. Mixture models should not be confused with models for compo
DxSampleCxImage
- GMM GMM高斯混合模型聚类 Gaussian mixture model clustering-GMM GMM Gaussian mixture model clustering
em
- 基于EM算法的模型聚类的研究及应用,GMM高斯混合模型-EM-based clustering algorithm and its application model, GMM Gaussian mixture model
GMM
- 高斯k均值程序算法,k-means是一种常用的聚类算法,可以实现数据的聚类。-K-means algorithm for Gaussian process, k-means clustering algorithm is a commonly used, can achieve data clustering.
GMM_MDL
- matlab环境下开发的高斯混合模型,并实现聚类,最佳的类数由最大描述准则(MDL)来确定,并附有实验数据,是国外论文中的代码。-Gaussian mixture model developed in the Matlab environment , and clustering, to determine the optimal number of classes by the largest describe the criteria (MDL) , together with experi
clustering
- 使用K-means,混合高斯模型(GMM),层次聚类算法实现的多类别数据的聚类。内含详细的实验报告。-Using K-means, Gaussian mixture model (GMM), hierarchical clustering algorithm to achieve multi-class data clustering. Including a detailed lab report.
gmm_matlab
- GMM聚类实现,运行gmmclassfile.m文件,可实现多个数据的聚类,输入数据用.data的文件,可在gmmclassfile.m修改数据文件路径。-GMM clustering implementation
clustering
- 一种使用GMM(Gaussian Mixture Model)聚类方法,亲测,好使-A clustering method using GMM (Gaussian Mixture Model).
gmm_mt
- fficient GMM clustering using Multiple Threads
GM_EM
- 经典的em算法即期望最大化算法,可用于高斯混合GMM模型和聚类算法,-Classic em algorithm that expectation maximization algorithm can be used for Gaussian mixture models and GMM clustering algorithm,
GMM
- 聚类算法之高斯混合模型,GMM 和 k-means 很像,不过 GMM 是学习出一些概率密度函数来(所以 GMM 除了用在 clustering 上之外,还经常被用于 density estimation )。-Gaussian mixture model of clustering algorithm, GMM and k-means like, but GMM is learning some probability density function (so GMM except on cl
Hierarchical-clustering
- 里面有层次聚类,k-means和gmm聚类算法-Hierarchical clustering
多维GMM聚类
- 该命令实现的是多维情况下的三维数据GMM聚类,该算法的缺点是使用matlab 对于大数据有计算机内存的要求。(This command implements GMM clustering of three-dimensional data in multi-dimensional situation. The disadvantage of this algorithm is that it requires computer memory for large data using matlab
Clustering
- 1) 使用凝聚型层次聚类算法(即最小生成树算法)对所有数据点进行聚类,最后聚成3类。相异度定义方法可选择single linkage、complete linkage、average linkage或者average group linkage中任意一种。 2) 使用C-Means算法对所有数据点进行聚类。C=3。 任务2(必做): 使用高斯混合模型(GMM)聚类算法对所有数据点进行聚类。C=3。并请给出得到的混合模型参数(包括比例??、均值??和协方差Σ)。 任务3(全做): 1) 参考数据文