搜索资源列表
Volterra_MultiStepPred_luzhenbo
- 基于Volterra滤波器混沌时间序列多步预测 作者:陆振波,海军工程大学 欢迎同行来信交流与合作,更多文章与程序下载请访问我的个人主页 电子邮件:luzhenbo@sina.com 个人主页:luzhenbo.88uu.com.cn 参考文献: 1、张家树.混沌时间序列的Volterra自适应预测.物理学报.2000.03 2、Scott C.Douglas, Teresa H.-Y. Meng, Normalized Data Nonlineariti
adaptive-signal-arithmetic
- Some algorithms of variable step size LMS adaptive filtering are studied.The VS—LMS algorithm is improved. Another new non-linear function between肛and e(/ t)is established.The theoretic analysis and computer simulation results show that this algo
new-lms-arithmetic-simulation-code
- In 1960, R.E. Kalman published his famous paper describing a recursive solution to the discrete-data linear filtering problem. Since that time, due in large part to advances in digital computing, the Kalman filter has been the subject of extensiv
NLMS
- 若不希望用与估计输入信号矢量有关的相关矩阵来加快LMS算法的收敛速度,那么可用变步长方法来缩短其自适应收敛过程,其中一个主要的方法是归一化LMS算法(NLMS算法),变步长 的更新公式可写成 W(n+1)=w(n)+ e(n)x(n) =w(n)+ (3.1) 式中, = e(n)x(n)表示滤波权矢量迭代更新的调整量。为了达到快速收敛的目的,必须合适的选择变步长 的值,一个可能策略是尽可能多地减少瞬时平方误差,即用瞬时平方误差作为均方误差的MSE简单估计,这也是LMS算法的基本思想
OneimprovementchangeslengthofstrideLMS
- 在对一些变步长LMS算法分析的基础上,提出了步长因子 (n)与误差信号e(n)之间一种新的非线性函数关系-In a number of variable step size LMS algorithm based on the analysis, put forward a step length factor (n) and error signal e (n) between the non-linear function of a new relationship
LMS_RLS_sim
- 功能描述:测试LMS与RLS算法,比较两种算法的收敛特性 文件名:LMS_RLS_sim.m 测试用例: x(n)+a1*x(n-1)+a2*x(n-2)=e(n),a1=-1.6,a2=0.81,e(n)为高斯白噪声 文件输出:系数a1的值 调用函数:function [A] = LMS_Algo(M,N,mu,xn) 被调用:无 作者:mingcheng 编写时间:2009-10-13 修改时间:2009-10-13
satish
- Avetis Ioannisyan avetis@60ateight.com Last Updated: 11/30/05 LMS Channel Adaptation reset randomizers randn( state ,sum(100*clock)) rand( state ,sum(100*clock)) numPoints = 5000 numTaps = 10 channel order Mu = 0
mini2
- clear all clc t=0:1/1000:10-1/1000 s=sin(2*pi*t) snr=20 s_power=var(s) varience of s linear_snr=10^(snr/10) factor=sqrt(s_power/linear_snr) noise=randn(1,length(s))*factor x=s+noise Ó É SNR¼ Æ Ë ã
LMS_basiss
- 用MATLAB实现LMS自适应滤波器的e(n)^2的曲线及清楚LMS算法-LMS adaptive filter using MATLAB implementation of the e (n) ^ 2 and clear the curve of LMS algorithm
source
- This derivation of the normalised least mean square algorithm is based on Farhang- Boroujeny 1999, pp.172-175, and Diniz 1997, pp 150-3. To derive the NLMS algorithm we consider the standard LMS recursion, for which we select a variable step size
x
- This derivation of the normalised least mean square algorithm is based on Farhang- Boroujeny 1999, pp.172-175, and Diniz 1997, pp 150-3. To derive the NLMS algorithm we consider the standard LMS recursion, for which we select a variable step size
lms
- 最小均方算法lms在波束形成中的应用 LMS算法步骤: 1,、设置变量和参量: X(n)为输入向量,或称为训练样本 W(n)为权值向量 b(n)为偏差 d(n)为期望输出 y(n)为实际输出 η为学习速率 n为迭代次数 2、初始化,赋给w(0)各一个较小的随机非零值,令n=0 3、对于一组输入样本x(n)和对应的期望输出d,计算 e(n)=d(n)-X^T(n)W(n) W(n+1)=W(n)+ηX(n)e(n) 4、判断是否满足条件,若满足
LMS
- 1,、设置变量和参量: X(n)为输入向量,或称为训练样本 W(n)为权值向量 e(n)为偏差 d(n)为期望输出 y(n)为实际输出 η为学习速率 n为迭代次数 2、初始化,赋给w(0)各一个较小的随机非零值,令n=0 3、对于一组输入样本x(n)和对应的期望输出d,计算 e(n)=d(n)-X^T(n)W(n) W(n+1)=W(n)+ηX(n)e(n) 4、判断是否满足条件,若满足算法结束,若否
Improved-Variable-Step-Size-(IVSS)-LMS-for-Active
- With the advent of large industrial machinery, lighter weight materials for transportation vehicles and closer proximity of homes in residential areas, noise disturbances in listening spaces are becoming even more prevalent now than in the pa
LMS
- LMS自适应算法 自适应横向滤波器两个权值,输入随机信号r(n)的样本间相互独立,且它的平均功率为Pr =E[r2(n)]=0.01,信号周期为N=16个样点。求最佳权向量解ω0和收敛因子μ的取值范围,并分别汇出ω(0)=[0 0]T,μ=0.1及ω(0)=[4 -10]T,μ=0.05时,两种情况下的权值变化轨迹和第一种情况下误差e(n)与迭代次数n的关系曲线。-LMS adaptive algorithm The right value of the change trajector
review-elearning.pdf
- This document tries to present the results of a review of three e-learning application used at the University of Gadjah Mada in hopes chosen one one as the application of a Learning Management System (LMS) that match. review peel more technical
computerwork_1
- 1) 借助MATLAB画出误差性能曲面和误差性能曲面的等值曲线; 2) 写出最陡下降法, LMS算法的计算公式( ); 3) 用MATLAB产生方差为0.05,均值为0白噪音S(n),并画出其中一次实现的波形图; 4) 根据2)中的公式,并利用3)中产生的S(n),在1)中的误差性能曲面的等值曲线上叠加画出采用最陡下降法, LMS法时H(n)的在叠代过程中的轨迹曲线。 5)用MATLAB计算并画出LMS法时 随时间n的变化曲线(对 应S(n)的某一次的一次实现)和e(n)波形;某
LMS
- 实现了自适应信号处理LMS算法,分别绘出当w(0)=[0,0]T, =0.1及w(0)=[4, 10]T, =0.05时,LMS算法在两种下的权值变化轨迹、误差e(n)与迭代次数n的关系曲线-The LMS adaptive signal processing algorithm
speeh comprcession using LMS filter and UNA
- speech signal i.e..wav file is compressed for proper enhancement using adaptive LMS filter and una.
LMS_filter_Altera
- 2017电子竞赛e题软件部分,fpga实现(lms adaptive filter undergraduate electronic design contest)