搜索资源列表
classify
- 包含用lms、mse、perceptron准则函数的二类分类器
NLMS
- 若不希望用与估计输入信号矢量有关的相关矩阵来加快LMS算法的收敛速度,那么可用变步长方法来缩短其自适应收敛过程,其中一个主要的方法是归一化LMS算法(NLMS算法),变步长 的更新公式可写成 W(n+1)=w(n)+ e(n)x(n) =w(n)+ (3.1) 式中, = e(n)x(n)表示滤波权矢量迭代更新的调整量。为了达到快速收敛的目的,必须合适的选择变步长 的值,一个可能策略是尽可能多地减少瞬时平方误差,即用瞬时平方误差作为均方误差的MSE简单估计,这也是LMS算法的基本思想
LMS algorithm for adaptive filtering and adaptive equalization applications
- 利用LMS做自适应滤波,利用MSE算法做自适应均衡
classification
- 多种实现三组数据集(iris测试数据)分类的算法实现(LMS、MSE、HK等。-several methods(LMS,MSE,HK) to achieve classification of three data set(iris data set).
ofdm_EM_channel
- 分析了相位噪声对正交频分复用(OFDM)系统的影响,发现相位噪声不仅产生 通用相角错误(CPE),而且还会产生载波间干扰(ICI),这都使OFDM系统的性能急剧恶 化,因此必须对CPE和ICI进行校正.文中给出了基于MSE准则的CPE校正方法,考虑到 ICI干扰主要来源于相邻信道,进而提出了基于LMS法则的自适应相邻信道干扰消除方 法.整个算法简单高效.仿真结果表明,所提出的算法大大改善了OFDM系统的性能-Analysis of phase noise on the ortho
da2
- FIR_A=[1 1 2] FIR_B=[2 1 1] function [w_out mse_out ref_out] = LMS(FIR_A,FIR_B,1,wave=square) [w mse ref res iter] = LMS(FIR_A,FIR_B,L,wave) LMS filter to solve the system identification problem represented below: ---------- ------
LMSAFFilter
- 在分析最小均方自适应滤波器(LMSAF)均方误差(MSE)的收敛性时,文献常用统计自相关矩阵代替瞬时自相关矩阵以简化分析,由此得出的收敛条件比较粗糙。本程序指出:不相关高斯输入情况下,无需如上简化,可依据高斯阶矩因式分解定理得到确切的MSE收敛条件,相应的失调表式能更准确地预报失调-In the analysis of LMS adaptive filter (LMSAF) the mean square error (MSE) convergence, the literature commo
lms_rsl
- 利用lms算法和rls算法,对通过给定系统h的随机信号进行自适应滤波,通过抽头w对系统进行逆辨识与辨识,同时产生MSE 即均方误差,来描述对信号恢复的效果。-Using lms algorithm and rls algorithms h through a given system adaptive filtering of random signals, the system through the tap w reverse identification and recognition,
10.1.1.11.5905
- This paper compares performance of nite impulse response (FIR) adaptive linear equalizers based on the recursive least-squares (RLS) and least mean square(LMS) algorithms in nonstationary uncorrelated scattering wireless channels. Simulation resul
mse
- 针对数字通信系统中,由于码间串扰(ISI)和信道加性噪声的干扰,导致信号在接收端产生误码,设计了基于LMS算法的自适应均衡器(滤波器)。是一篇标准的毕业论文,有需要的朋友可以拿来做参考-Thesis for digital communications systems, crosstalk due to inter-symbol (ISI) and additive noise channel interference, leading to signals generated in the r
BS-LMS
- LMS算法的修改更好地衔接和使用两个步骤尺寸较小的MSE-Modification of the LMS algorithm is better convergence and the use of two steps smaller MSE
An-Adaptive-Block-Based-Eigenvector-Equalization.
- An Adaptive Block-Based Eigenvector Equalization for Time-Varying Multipath Fading Channels.In this paper we present an adaptive Block- Based EigenVector Algorithm (BBEVA) for blind equalization of time-varying multipath fading channels. In addit
communication
- // Matlab programs to find LMS Algorithm(Least mean square error),MSE(Mean square Error), Eye Diagram and QAM(Quadrature Amplitude Modulation).
lms
- 最小均方误差算法的编程,简单有效,完整-MSE programming algorithm
Filter_LMS_mu
- 研究用于自适应均衡器的LMS算法。研究步长的影响。分别画出W=2.9时,mu= 0.01、0.04和0.08情况下的MSE学习曲线-Research for the adaptive LMS algorithm equalizer. Research on the impact of the step. Draw W = 2.9, respectively, when, mu = MSE learning curve 0.01,0.04 and 0.08 in case of
1122
- 基本原理: 1、输入信号 2、输入信号分解为各个子带信号,这里采用均匀子带 3、在各个子带上应用LMS自适应滤波算法计算 4、计算各子带的MSE 5、输入与输出信号结果显示,MSE分析-Basic principle: 1, input signal 2, the input signal is decomposed into each sub band signal, and the uniform sub band is adopted here. 3. Th
LMS2
- LMS算法 两个正弦信号的LMS滤波 均方误差图 功率谱图-LMS algorithm Two sine signals of LMS filter Mean square error (mse) figure Power spectrum
自适应滤波算法
- 在MIMO信道中仿真,LS,LMS,RLS,,LMS算法的MSE表现(Simulation in MIMO channel, MSE performance of LS, LMS, RLS, LMS algorithm)
无线MIMO系统/光纤模分复用系统的MIMO-LMS自适应均衡算法
- 代码注释十分详细,可将个人的数据导入后,直接运行即可。此代码为MIMO-LMS自适应均衡算法,以4×4(可自行修改)MIMO/MDM系统为例,信号调制方式为PAM4(可自行修改),在CMA与收敛后,采用了三种MIMO-LMS算法:基础MIMO-LMS.分段步长MIMO-LMS与变步长MIMO-LMS,分别对四路接收信号进行均衡,计算均衡后数据的误码率并做出误码率与接收功率的曲线图。此外还可做出三种MIMO-LMS 均方误差MSE的收敛曲线,三种MIMO-LMS均衡前后信号散点图等。