搜索资源列表
Relay-to-Unet
- 本文讨论的是基于Unet框架,Relay引起的结构变化。在UNet框架下,Relay主要引起三个大模块的变化:网元、覆盖、容量仿真。另外,Relay对于工程框架也有少量影响,但仅限于添加新的图标等-This discussion is based on Unet framework, Relay induced structural changes. In UNet framework, Relay module mainly caused by three big changes: NE, c
LockStepDemo
- This project shows how to implement Synchronized Lockstep multiplayer with Unity3D networking (Pre UNet). This is great for RTS and other non-realtime games.
game sourse code
- 一个unity 局域网联机小游戏源码 仅供学习交流 版权所属为作者(是原创的哦) 有疑问或资讯请加qq 3042738393(A unity LAN online game source code)
uMMORPG+1.65
- 基于UNet多人网络实现。NetworkBehavior只做参考(Unity3d multiplayer network implementation, UNet)
unet
- 对图片进行纹路切割。基于Keras,实现神经网络的图片训练(Based on Keras, the picture is cut in pattern, and the picture training of the neural network is realized.)
unet-master
- 基于tensorflow的u_net的实现(Implementation of u_net based on tensorflow)
unet
- 为图像分割任务中Unet网络结构,可以自行根据需求进行修改(this is the network of Unet)
TensorFlow-Examples-master
- 基于Tensorflow的Unet实现,里面有详细的教程。(TensorFlow for Unet, in which there are detailed teaching lecture.)
unet
- unet网络的python版本,一种非常成功的图像学习模型,用于生物医学图像分割(a unet model wrote by python)
Unet-master1
- 适用对象:小样本数据。功能:分割各种类型图像。评价:效果良好的深度学习算法。(Applicable object: small sample data. Function: Segmentation of various types of images. Evaluation: A good deep learning algorithm.)
unet-master
- 用于细胞检测的神经网络代码。 使用Unet进行边缘检测。(Neural network code for cell detection. Unet is used for edge detection.)
models
- 包含unet/google-v2/CNN等多种神经网络的模型(Multiple Neural Network Models)
Semantic-Segmentatiomaster
- 遥感图像的语义分割,分别使用Deeplab V3+(Xception 和mobilenet V2 backbone)和unet模型(Semantic segmentation of remote sensing images using Deeplab V3+ (Xception and Mobilenet V2 backbone) and UNET models)
unet-pytorch-master
- 使用Pytorch搭建U-Net,该模型可以对随机传入任意大小的图片进行图片分割,根据所训练的数据和标签得到索要分割的区域。(Using Python to build u-net, the model can segment random incoming pictures of any size, and get the region to be segmented according to the trained data and labels.)
Pytorch-UNet-master
- 基于unet的网络的语义分割希望大家喜欢(I hope you enjoy the semantic segmentation based on unet)
Unet
- UNet最早发表在2015的MICCAI上,短短3年,引用量目前已经达到了4070,足以见得其影响力。而后成为大多做医疗影像语义分割任务的baseline,也启发了大量研究者去思考U型语义分割网络。而如今在自然影像理解方面,也有越来越多的语义分割和目标检测SOTA模型开始关注和使用U型结构,比如语义分割Discriminative Feature Network(DFN)(CVPR2018),目标检测Feature Pyramid Networks for Object Detection(FP
Unet深度学习
- 使用Unet卷积神经网络实现深度学习,成功识别细胞膜的轮廓。
Unet卷积神经网络
- Python编的Unet卷积神经网络,可以用于噪声压制、边缘识别等应用,运行效率较高。
U-Net-master-python
- 论文U-Net: Convolutional Networks for Biomedical Image Segmentation的实现代码,使用Unet卷积神经网络,实现了细胞的轮廓识别。使用Python代码,keras框架。
Swin-Unet
- 而此前由 MSRA 提出的 Swin Transformer 正好作为视觉 Transformer 领域新的backbone。相较于 TransUNet,去掉CNN编码,用 Swin Transformer 来代替原先的 ViT,将 UNet 全部结构都换成 Swin Transformer。因而,基于 Swin Transformer 的Swin-UNet就应运而生。