当前位置:
首页 资源下载
搜索资源 - classification by nearest neighbor
搜索资源列表
-
1下载:
子模式主成分分析首先对原始图像分块,然后对相同位置的子图像分别建立子图像集,在每一个子图像集内使用PCA方法提取特征,建立子空间。对待识别图像,经相同分块后,分别将子图像向对应的子空间投影,提取特征。最后根据最近邻原则进行分类。-Sub-mode principal component analysis first of the original image block, and then the same sub-image, respectively, the location of the
-
-
3下载:
灰度共生矩阵提取特征值,最近邻算法,进行纹理图像分类。creat_apprentissage用来训练样本,cooccurence是灰度共生矩阵提取特征值,knn是进行k最近邻算法,classif是纹理图像分类-coocurence matrix,using K nearest neighbor to classify textures images.
-
-
0下载:
k最近邻分类器。编写的一个matlab函数。输入向量Z表示所属的类,返回一个向量,表示由k最近邻分类给定的。-k nearest neighbor classifier. Write a matlab function. Input vector Z that belongs to the class, returns a vector, expressed by the k nearest neighbor classification given.
-
-
0下载:
In pattern recognition, the k-nearest neighbor algorithm (k-NN) is a method for classifying objects based on closest training examples in the feature space. k-NN is a type of instance-based learning, or lazy learning where the function is only approx
-
-
0下载:
In pattern recognition, the k-nearest neighbor algorithm (k-NN) is a method for classifying objects based on closest training examples in the feature space. k-NN is a type of instance-based learning, or lazy learning where the function is only approx
-
-
0下载:
In pattern recognition, the k-nearest neighbor algorithm (k-NN) is a method for classifying objects based on closest training examples in the feature space. k-NN is a type of instance-based learning, or lazy learning where the function is only approx
-
-
0下载:
邻近算法,或者说K最近邻(kNN,k-NearestNeighbor)分类算法是数据挖掘分类技术中最简单的方法之一。所谓K最近邻,就是k个最近的邻居的意思,说的是每个样本都可以用它最接近的k个邻居来代表。
kNN算法的核心思想是如果一个样本在特征空间中的k个最相邻的样本中的大多数属于某一个类别,则该样本也属于这个类别,并具有这个类别上样本的特性。该方法在确定分类决策上只依据最邻近的一个或者几个样本的类别来决定待分样本所属的类别。 kNN方法在类别决策时,只与极少量的相邻样本有关。由于kNN方
-
-
0下载:
CNN(CondensedNearestNeighbor)是最早的基于近邻分类的实例选择算法。本程序实现了CNN算法,能很好的实现近邻分类的实例选择。-CNN (CondensedNearestNeighbor) is the earliest instance selection algorithm based on nearest neighbor classification. The core idea of the algorithm is that if the instance c
-
-
0下载:
KNN是通过测量不同特征值之间的距离进行分类。它的的思路是:如果一个样本在特征空间中的k个最相似(即特征空间中最邻近)的样本中的大多数属于某一个类别,则该样本也属于这个类别。K通常是不大于20的整数。KNN算法中,所选择的邻居都是已经正确分类的对象。该方法在定类决策上只依据最邻近的一个或者几个样本的类别来决定待分样本所属的类别。(NN is classified by measuring the distance between the different eigenvalues. It is
-
-
0下载:
ML-KNN,这是来自传统的K-近邻(KNN)算法。详细地,为每一个看不见的实例中,首先确定了训练集中的k近邻。之后,基于从标签集获得的统计信息。这些相邻的实例,即属于每个可能类的相邻实例的数量,最大后验(MAP)原理。用于确定不可见实例的标签集。三种不同现实世界中多标签学习问题的实验研究,即酵母基因功能分析、自然场景分类和网页自动分类,表明ML-KNN实现了卓越的性能(ML-KNN which is derived from the traditional K-nearest neighbo
-
-
0下载:
本程序主要参照论文,《基于OpenCV的脱机手写字符识别技术》实现了,对于手写阿拉伯数字的识别工作。识别工作分为三大步骤:预处理,特征提取,分类识别。预处理过程主要找到图像的ROI部分子图像并进行大小的归一化处理,特征提取将图像转化为特征向量,分类识别采用k-近邻分类方法进行分类处理,最后根据分类结果完成识别工作。
程序采用Microsoft Visual Studio 2010与OpenCV2.4.4在Windows 7-64位旗舰版系统下开发完成。并在Windows xp-32位系统下测试
-
-
2下载:
分别采用有边缘和无边缘两类图像作为样本库,使用用Hu不变矩对图像进行特征提取,并使用K近邻分类法进行分类和识别。(Two types of images with edges and no edges are used as the sample library, the images are extracted using Hu invariant moments, and the images are classified and identified by K nearest neighb
-
-
0下载:
k-nn算法 K-NN算法 ( K Nearest Neighbor, K近邻算法 ), 是机器学习中的一个经典算法, 比较简单且容易理解. K-NN算法通过计算新数据与训练数据特征值之间的距离, 然后选取 K (K>=1) 个距离最近的邻居进行分类或者回归. 如果K = 1 , 那么新数据将被分配给其近邻的类.(k-nnK - NN algorithm (K on his Neighbor, K Nearest Neighbor algorithm), is a classical al
-
-
0下载:
针对人脸特征分类问题,提出一种基于主动形状模型(ASM)和 K 近邻算法的人脸脸型分类方法。将 Hausdorff 距离作为 K 近邻算法的距离函数,利用 ASM 算法提取待测图像的特征点,对点集进行归一化后计算人脸轮廓特征点与样本库中所有样本点集的 Hausdorff距离,根据该距离值,通过 K 近邻算法实现待测图像的脸型分类。实验结果证明,该方法分类正确率高、速度快、易于实现。(Aiming at the problem of face feature classification, thi
-