搜索资源列表
quaternion
- 四元数乘法、求逆、共轭、求范数函数,并附有求解矢量旋转坐标的程序例子-Quaternion multiplication, inverse, conjugate, seeking norm function, together with procedures for solving the example of vector rotating coordinate
getd
- 共轭梯度法,是数值分析中很重要的一种,源码为其在matlab中的实现。-Conjugate gradient method, numerical analysis is a very important one in the matlab source code for its realization.
cgls
- 用于解反问题的共轭梯度法,对于Ax=b,输入矩阵A,列向量b,以及迭代步数k,可求的列向量x-Solution of inverse problems for the conjugate gradient method, for Ax = b, the input matrix A, the column vector b, as well as the number of iterations k, rectifiable column vector x
Conjugate-gradient
- 共轭梯度法是介于最速下降法与牛顿法之间的一个方法,它仅需利用一阶导数信息,但克服了最速下降法收敛慢的缺点,又避免了牛顿法需要存储和计算Hesse矩阵并求逆的缺点,共轭梯度法不仅是解决大型线性方程组最有用的方法之一,也是解大型非线性最优化最有效的算法之一。-Conjugate gradient method is between the steepest descent method and Newton method between a method that only use the firs
Newton
- 共轭梯度法(Conjugate Gradient)是介于最速下降法与牛顿法之间的一个方法,它仅需利用一阶导数信息,但克服了最速下降法收敛慢的缺点,又避免了牛顿法需要存储和计算Hesse矩阵并求逆的缺点,共轭梯度法不仅是解决大型线性方程组最有用的方法之一,也是解大型非线性最优化最有效的算法之一。 在各种优化算法中,共轭梯度法是非常重要的一种。其优点是所需存储量小,具有步收敛性,稳定性高,而且不需要任何外来参数。-Conjugate Gradient method (Conjugate Gradie
gongetidufadshuzhixingzhi
- 共轭梯度法(Conjugate Gradient)是介于最速下降法与牛顿法之间的一个方法,它仅需利用一阶导数信息,但克服了最速下降法收敛慢的缺点,又避免了牛顿法需要存储和计算Hesse矩阵并求逆的缺点,共轭梯度法不仅是解决大型线性方程组最有用的方法之一,也是解大型非线性最优化最有效的算法之一。 在各种优化算法中,共轭梯度法是非常重要的一种。其优点是所需存储量小,具有步收敛性,稳定性高,而且不需要任何外来参数-Conjugate Gradient method (Conjugate Gradien
Conjugate-Gradient-Method
- 共轭梯度法(Conjugate Gradient)是介于最速下降法与牛顿法之间的一个方法,它仅需利用一阶导数信息,但克服了最速下降法收敛慢的缺点,又避免了牛顿法需要存储和计算Hesse矩阵并求逆的缺点,共轭梯度法不仅是解决大型线性方程组最有用的方法之一,也是解大型非线性最优化最有效的算法之一。-Conjugate gradient method (Conjugate Gradient) between the steepest descent between law and Newton'
irfft
- 计算共轭对称复序列的快速傅里叶反变换,其变换结果是实数。-Symmetric complex conjugate calculation sequence of the fast Fourier inverse transform, the transformed result is a real number.
conjgradmethod
- 共轭梯度法(Conjugate Gradient)是介于最速下降法与牛顿法之间的一个方法,它仅需利用一阶导数信息,但克服了最速下降法收敛慢的缺点,又避免了牛顿法需要存储和计算Hesse矩阵并求逆的缺点,共轭梯度法不仅是解决大型线性方程组最有用的方法之一,也是解大型非线性最优化最有效的算法之一。这里给出共轭梯度法的源程序-Conjugate gradient method (Conjugate Gradient) is between the steepest descent method and
bycgste
- 共轭梯度法(Conjugate Gradient)是介于最速下降法与牛顿法之间的一个方法,它仅需利用一阶导数信息,但克服了最速下降法收敛慢的缺点,又避免了牛顿法需要存储和计算Hesse矩阵并求逆的缺点,共轭梯度法不仅是解决大型线性方程组最有用的方法之一,也是解大型非线性最优化最有效的算法之一-Conjugate gradient method (Conjugate Gradient) is between the steepest descent method and Newton' s
tidu
- 共轭梯度法(Conjugate Gradient)是介于最速下降法与牛顿法之间的一个方法,它仅需利用一阶导数信息,但克服了最速下降法收敛慢的缺点,又避免了牛顿法需要存储和计算Hesse矩阵并求逆的缺点,共轭梯度法不仅是解决大型线性方程组最有用的方法之一,也是解大型非线性最优化最有效的算法之一。-Conjugate Gradient Method (Conjugate Gradient) is between the steepest descent method between a law an
ivtcg
- 不完全变量截断共轭梯度算法,目标函数的最优化求解,常用于逆问题的求解,是典型的L1范数算法。-Incomplete variable truncated conjugate gradient algorithm for solving optimization objective function, commonly used in inverse problem solving, is typical of L1-norm algorithm.
Conjugate-Gradient-Method
- 共轭梯度法(Conjugate Gradient)是介于最速下降法与牛顿法之间的一个方法,它仅需利用一阶导数信息,但克服了最速下降法收敛慢的缺点,又避免了牛顿法需要存储和计算Hesse矩阵并求逆的缺点,共轭梯度法不仅是解决大型线性方程组最有用的方法之一,也是解大型非线性最优化最有效的算法之一。 在各种优化算法中,共轭梯度法是非常重要的一种。其优点是所需存储量小,具有步收敛性,稳定性高,而且不需要任何外来参数。-Conjugate gradient method (Conjugate Gradie
FR
- 共轭梯度法(Conjugate Gradient)是介于最速下降法与牛顿法之间的一个方法,它仅需利用一阶导数信息,但克服了最速下降法收敛慢的缺点,又避免了牛顿法需要存储和计算Hesse矩阵并求逆的缺点,共轭梯度法不仅是解决大型线性方程组最有用的方法之一,也是解大型非线性最优化最有效的算法之一。 在各种优化算法中,共轭梯度法是非常重要的一种。其优点是所需存储量小,具有步收敛性,稳定性高,而且不需要任何外来参数。-The Conjugate Gradient method is a method b
EITtext
- 解决EIT中的逆问题,包括吉洪诺夫,Landewer,L1,共轭梯度法等(Solve the inverse problem in EIT, including gihunov, landewer, L1, conjugate gradient method and so on)