当前位置:
首页 资源下载
搜索资源 - false positive and false negative
搜索资源列表
-
0下载:
目的:运用强化学习!多分类器集成!降维方法等最新计算机技术,结合细胞病理知识,设计制作/智能化肺癌细胞病理图像诊断系统0"方法:采集细胞图像,运用基于强化学习的图像分割法将细胞区域从背景中分离出来 运用基于样条和改进2方法对重叠细胞进行分离和重构 提取40个细胞特征用于贝叶斯!支持向量机!紧邻和决策树4种分类器,集成产生肺癌细胞分类结果 建立肺癌细胞病理图库,运用基于等降维方法对细胞进行比对,给予未定型癌细胞分类"结果:/智能化肺癌细胞病理诊断系统0应用于临床随机1200例肺
-
-
0下载:
This function calculate the performance, based on Bayes theorem, of a clinical test. The input is based on a 2x2 matrix (true positive, false positives false negative, true negatives).
The Outputs are:
- Prevalence of disease
- Test Sensibility
-
-
0下载:
This function calculate the performance, based on Bayes theorem, of a clinical test. The input is based on a 2x2 matrix (true positive, false positives false negative, true negatives).-This function calculate the performance, based on Bayes theorem,
-
-
0下载:
将整数的各个数位存储为一个长度为四十的字符数组中各个元素。能够进行四十位的整数的加减法-Create a class HugeInteger that uses a 40-element array of digits to store integers as
large as 40 digits each (e.g. 8783 is stored as an array of {3,8,7,8,0,0,0,....} ), and use another
boolean membe
-
-
0下载:
网络态势可视化技术作为一项新技术,是网络安全态势感知与可视化技术的结合,将网络中蕴涵的态势状况通过可视化图形方式展示给用户,并借助于人在图形图像方面强大的处理能力,实现对网络异常行为的分析和检测。这种方式充分结合了计算机和人脑在图像处理方面的处理能力的优势,提高了对数据的综合分析能力,能够有效的降低误报率和漏报率,提高系统检测效率,减少反应时间。并且这种可视化方法对于有些显示有明显特征的异常行为,还具有一定的预测能力.-Network state visualization technology
-
-
1下载:
Minhashing和LSH算法。用于查找和比较一个pair是否是相似的。并分析false negative和false positive的值-Minhashing and Locality-Sensitive-Hashing (LSH). The algorithms are approximate in that they find only candidate pairs that are likely similar. Therefore, there are two types of
-