当前位置:
首页 资源下载
搜索资源 - kmeans cluster distance
搜索资源列表
-
0下载:
The Matlab functions and scr ipts in the MA toolbox are:
- ma_sone wav (PCM) to sone (specific loudness sensation)
- ma_mfcc wav (PCM) to MFCCs (Mel Frequency Cepstrum Coefficients)
- ma_sh sone to Spectrum Histogram
- ma_ph sone to
-
-
2下载:
余弦距离进行聚类分析,余弦距离kmeans进行聚类分析,-Cluster analysis cosine distance, cosine distance from the cluster analysis kmeans,
-
-
0下载:
我做的用Kmeans方法,分别采用欧式距离。夹角余弦,和度量函数的方法来表示两点的相似度-I do use Kmeans methods were used Euclidean distance. Angle cosine, and methods of measurement functions to represent the similarity of two
-
-
0下载:
K-means算法是一种动态聚类方法,这种方法先选择若干样本作为聚类的中心,在按某种聚类准则(通常采用最小距离原则)使各种样本向各个中心积聚,从而得到初始的分类,然后,判断分类的合理性,如果不合理,就修改分类,如此反复的修改聚类的迭代运算,直到合理为止。-K-means algorithm is a dynamic clustering method, this method, select the number of samples as a cluster center in the clu
-
-
0下载:
K均值有效执行++多元数据的聚类算法。它已经表明,该算法具有的总群集内距离的期望值是日志(K)的竞争力的上限。此外,K -均值++通常远高于香草收敛K均值少。-An efficient implementation of the k-means++ algorithm for clustering multivariate data. It has been shown that this algorithm has an upper bound for the expected value o
-
-
0下载:
利用k-means算法进行聚类,K-means算法以欧式距离作为相似度测度,它是求对应某一初始聚类中心向量V最有分类,使得评价指标J最小。算法采用误差平方和准则函数作为聚类准则函数。-Algorithm using k-means clustering, K-means algorithm Euclidean distance as a similarity measure, it is the pursuit of the vector V corresponding to a initial
-
-
0下载:
输入:聚类个数k,以及包含 n个数据对象的数据库。输出:满足方差最小标准的k个聚类。处理流程: (1)从 n个数据对象任意选择 k 个对象作为初始聚类中心.
(2)根据每个聚类对象的均值(中心对象),计算每个对象与这些中心对象的距离;并根据最小距离重新对相应对象进行划分;(3)重新计算每个(有变化)聚类的均值(中心对象)
(4)循环(2)到(3)直到每个聚类不再发生变化为止-Input: number of clusters k, and n data object contains a
-
-
0下载:
K均值聚类算法是先随机选取K个对象作为初始的聚类中心。然后计算每个对象与各个种子聚类中心之间的距离,把每个对象分配给距离它最近的聚类中心-K-means clustering algorithm is to randomly K objects as the initial cluster centers. Then calculate the distance of each object and each seed cluster centers, assigning each objec
-
-
0下载:
VLAD VLAD可以理解为是BOF和fisher vector的折中
BOF是把特征点做kmeans聚类,然后用离特征点最近的一个聚类中心去代替该特征点,损失较多信息;
Fisher vector是对特征点用GMM建模,GMM实际上也是一种聚类,只不过它是考虑了特征点到每个聚类中心的距离,也就是用所有聚类中心的线性组合去表示该特征点,在GMM建模的过程中也有损失信息;
VLAD像BOF那样,只考虑离特征点最近的聚类中心,VLAD保存了每个特征点到离它最近的聚类中心的距离;
-
-
0下载:
实现聚类,预测数据,在教育行业十分有帮助(The basic idea of KMeans algorithm is that the initial random given K cluster centers, according to the nearest neighbor principle, the sample points are divided into different clusters. Then, the centroid of each cluster is comp
-
-
0下载:
K-means算法是一种硬聚类算法,根据数据到聚类中心的某种距离来作为判别该数据所属类别。K-means算法以距离作为相似度测度。(kmeans uses the k-means++ algorithm for centroid initialization and squared Euclidean distance by default. It is good practice to search for lower, local minima by setting the 'Replica
-
-
0下载:
K-means算法是集简单和经典于一身的基于距离的聚类算法
采用距离作为相似性的评价指标,即认为两个对象的距离越近,其相似度就越大。
该算法认为类簇是由距离靠近的对象组成的,因此把得到紧凑且独立的簇作为最终目标。(K-means algorithm is a distance based clustering algorithm which is simple and classic.
Distance is used as a similarity evaluation index, t
-