当前位置:
首页 资源下载
搜索资源 - mnist neural network
搜索资源列表
-
2下载:
基于神经网络的手写数字识别的源代码,绝对能够正常编译并运行!-based on neural network handwritten numeral recognition of the source code is absolutely normal to compile and run!
-
-
1下载:
神经网络手写数字识别。配合美国MNIST标准手写数字字体库-Handwritten digit recognition neural network. With the U.S. standard of handwritten digital font library MNIST
-
-
1下载:
利用神经网络算法识别手写体文字的工程,工程的例子图像为MNIST DATABASE数据库中的图像-Use of neural network algorithm handwritten text recognition works, examples of images in the database image MNIST DATABASE
-
-
0下载:
neural network about hand write dgr-neural network about hand write dgree
-
-
0下载:
深度学习python实现,并附有MNIST上的测试程序,准确率98 以上-Deep learning learns low and high-level features large amounts of unlabeled data, improving classification on different, labeled, datasets. Deep learning can achieve an accuracy of 98 on the MNIST dataset.
-
-
0下载:
利用神经网络进行手写数字识别演示代码!非常具有代表性!-Using neural network Digital Recognition demo code!
-
-
0下载:
实现的一个用于手写数字识别的框架,可以设置神经网络结构,用的数据是mnist的(Implementation of a handwritten numeral recognition framework, you can set the neural network structure, the training data is MNIST)
-
-
0下载:
该库的目标是提供一种易于使用的方法来训练和测试神经网络的MNIST数字(在浏览器或node.js中)。它包括10000个不同的mnist数字样本,通过建立这个以便与Synaptic开箱即用。可以通过MNIST数字加载器自由创建不同示例c的任何数字(从1到60 000)(The goal of the library is to provide an easy-to-use method to train and test the MNIST numbers of the neural netwo
-
-
0下载:
用cnn卷积神经网络实现对mnist手写库的识别(mnist classfication with convolution neural network)
-
-
0下载:
简单的手写数字识别,在深度神经网络中的简单尝试,对于初学者有个很好的理解(Simple handwritten numeral recognition, in the depth of neural network simple attempt, for beginners have a good understanding)
-
-
3下载:
卷积神经网络(CNN),TensorFlow框架下运行,基于MNIST手写体数据集,可直接运行(Convolutional Neural Network (CNN), run under TensorFlow framework, can run directly based on MNIST handwritten dataset)
-
-
0下载:
利用神经网络对手写识别系统进行分类,正确率高达92%。(Using neural network to classify handwritten recognition system, the correct rate is as high as 92%.)
-
-
0下载:
CNN-mnist自制算法,使用卷积神经网络进行计算,准确率99.2(CNN-mnist is a algorithm written by yourself.A convolution neural network is used for calculation, the accuracy rate is 99.2)
-
-
1下载:
卷积神经网络的matlab实现,同时可以作为图像处理使用,用于csi室内定位(Convolution neural network matlab implementation, can also be used as image processing for csi indoor positioning)
-
-
0下载:
hello Word of keras ,第一个成功实现的卷积神经网络,下载了mnist数据集,并decode,,然后,为了加快速度,训练其中的一部分数据,并用predict测试,ok,2min内出结果.(网上其它程序试过,训练太久,一晚上都没训练出结果,于是自己动手设计了这个小程序)
环境:python3.6,keras2.1,PC i5(很破的电脑)(Hello Word of keras, the first successful convolution neural network,
-
-
2下载:
用Python3实现BP神经网络对MNIST数字手写体识别,下载就能用(Using Python3 to implement BP neural network for MNIST digital handwriting recognition, download can be used)
-
-
1下载:
基本的dnn,准确率有百分之93左右,有注释(Basic DNN, the accuracy rate is ninety-three percent)
-
-
0下载:
带drop out 的mnist 的dnn ,准确率百分之90(The DNN of MNIST with drop out has an accuracy rate of ninety percent)
-
-
2下载:
Python3.6实现神经网络算法,经过mnist数据集测试后表现良好,准确率约为95%-96%。
/src 为源代码
/data为mnist算集(This is a code samples for "Neural Networks and Deep Learning" using python3.)
-
-
1下载:
mnist分类,python,tensorflow,深层神经网络(MNIST classification, python, tensorflow, deep neural network)
-