搜索资源列表
NN
- 实现的一个用于手写数字识别的框架,可以设置神经网络结构,用的数据是mnist的(Implementation of a handwritten numeral recognition framework, you can set the neural network structure, the training data is MNIST)
用python 将mnist 数据集转化为图片
- 将官网打包好的mnist数据集转化成图片(translate mnist data to picture)
tensorflow_cov_mnist
- 基于tensorflow的mnist数据集卷积神经网络简单代码实现。(MNIST dataset based on tensorflow convolutional neural network simple code implementation)
mnist
- tensorflow demo of mnist by python
BP_mnist
- BP网络实现手写字体识别。压缩文件包含mnist数据集,直接在pycharm运行BPNetwork.py文件,输出测试集识别结果和测试精度。(Handwritten recognition based on BP network. The compressed file contains the MNIST data set, runs the BPNetwork.py file directly in the pycharm, outputs the test set, identifies
mnist2pic
- 将mnist数据集.idx3-ubyte文件转换为.png文件,将转换后的图片自动保存到'picture'文件夹中,并且按照手写字体的数字分别放在对应“0-9”命名子文件夹中。(Convert the MNIST data set.Idx3-ubyte file to the.Png file, automatically save the converted image to the'PICTURE'folder, and place the number in the correspondi
mnist.pkl代码原文
- BP算法的实现,其中的手势识别,用python语言,在tensorflow下!(Implementation of BP algorithm)
network2
- 初学机器学习,第一步是做一个简单的手写数字识别,我选用的是MNIST数据集(用其他数据集也可以,原理都差不多),算法是KNN(下载库直接调用函数,算法的具体实现没有过多关心)。在网上也看到过MNIST数据集的Python代码,但是感觉有些复杂,作为初学者见到那么多代码就头大……这里分享一下我的代码,虽然并不完善,但是可以为其他初学者提供一点简单的思路吧。(Learning machine learning, the first step is to do a simple handwritten
AlexNet
- 使用TensorFlow 实现 AlexNet ,并使用 Mnist 数据集进行训练并测试。(AlexNet is implemented using TensorFlow and trained and tested using the Mnist data set.)
code
- 基于python的mnist数据集的读取,以及转换为csv形式(Python based MNIST data set read, and converted to CSV form)
mnist
- 深度学习时间手写数字识别,使用python和tensorflow实现(Handwritten numerals recognition in depth learning time)
SAE
- 使用TensorFlow实现稀疏自编码神经网络,采用数据mnist(Using TensorFlow to realize sparse atuoencoder neural network, using data MNIST)
LeNet5MNIST
- 使用TensorFlow处理MNIST数据,帮助更好的理解和使用TensorFlow(Using TensorFlow to process MNIST data to help better understand and use TensorFlow)
mnist实验
- 包含训练用的图片数据包,python源代码,mnist实验,深度学习,进行图片分类(mnist experiment.python code.deep learning.picture classification,etc.)
MNIST_CNN
- 用于MNIST数据集,训练卷积神经网络,预测准确率大约为99.3%(Training Convolutional Neural Network on MNIST dataset)
stacking
- kaggle digitrecognizer MNIST by stacking some machine learning method, such like GBM(Gradient Boosting Method), LR, Extra Randomized Trees, Random Forest,KNN,etc.用stacking的方法实现手写数字识别MNIST。(kaggle digitrecognizer MNIST by stacking some machine learnin
python-dbn-master
- 运用python语言,基于dbn的手写数字体识别(Handwritten numeral recognition based on dbn using python language)
input_data
- mnist数据集的导入文件,官网上有可能进不去(def maybe_download(filename, work_directory): """Download the data from Yann's website, unless it's already here.""")
mnist分类
- mnist分类,python,tensorflow,深层神经网络(MNIST classification, python, tensorflow, deep neural network)
PCA+mnist
- 基于python,利用主成分分析(PCA)和K近邻算法(KNN)在MNIST手写数据集上进行了分类。 经过PCA降维,最终的KNN在100维的特征空间实现了超过97%的分类精度。(Based on python, it uses principal component analysis (PCA) and K nearest neighbor algorithm (KNN) to classify on the MNIST handwritten data set. After PCA dime