当前位置:
首页 资源下载
搜索资源 - multiple classifiers
搜索资源列表
-
0下载:
基于多分类器组合的笔迹验证 --文章-Based on the composition of the classifier based on the handwriting test multiple classifiers combination of handwriting authentication -- article
-
-
0下载:
多分类器集成算法,应用前景广泛,本pdf有益于对该算法的了解和学习,共享之。-multiple classifiers integration algorithm, broad application prospects, the benefits of this algorithm pdf understanding and learning, Sharing.
-
-
0下载:
目的:运用强化学习!多分类器集成!降维方法等最新计算机技术,结合细胞病理知识,设计制作/智能化肺癌细胞病理图像诊断系统0"方法:采集细胞图像,运用基于强化学习的图像分割法将细胞区域从背景中分离出来 运用基于样条和改进2方法对重叠细胞进行分离和重构 提取40个细胞特征用于贝叶斯!支持向量机!紧邻和决策树4种分类器,集成产生肺癌细胞分类结果 建立肺癌细胞病理图库,运用基于等降维方法对细胞进行比对,给予未定型癌细胞分类"结果:/智能化肺癌细胞病理诊断系统0应用于临床随机1200例肺
-
-
0下载:
多分类支持向机C语言源代码.内含祥细使用说明及应用例子与数据.-Multiple classifiers to support the C language source code machine.祥细contains examples of use and application and data.
-
-
0下载:
Multi-class Coding (adapted from from LS-SVM for SPIDER). Encode (code_MOC, code_ECOC, code_OneVsAll, code_OneVsOns) and decode (codedist_hamming, codedist_bay) a multi-class classification task into multiple binary classifiers.
-
-
0下载:
使用bolztmann机实现多层分类网络,内有mnist数据集-Machine to achieve multiple classifiers using bolztmann network data sets within mnist
-
-
0下载:
基于自组织数据挖掘的多分类器集成选择的程序-Multiple classifiers ensemble selection based on GMDH
-
-
0下载:
Abstract—In recent years, the use of machine learning
algorithms (classifiers) has proven to be of great value in
solving a variety of problems in software engineering including
software faults prediction. This paper extends the idea of
predi
-
-
2下载:
将多类别问题分解成多个二类别问题是解决多类别分类问题的常用方式。传统one against all(OAA)分解方式的性能更多的依赖于个体分类器的精度,而不是它的差异性。本文介绍一种基于集成学习的适于多类问题的神经网络集成模型,其基本模块由一个OAA方式的二类别分类器和一个补充多类分类器组成。测试表明,该模型在多类问题上比其他经典集成算法有着更高的精度,并且有较少存储空间和计算时间的优势。-Decompose multi-class problem into multiple binary cl
-
-
0下载:
Many state-of-the-art approaches for object recognition
reduce the problem to a 0-1 classifi cation task. Such re-
ductions allow one to leverage sophisticated classifi ers for
learning. These models are typically trained independentl
-
-
0下载:
SVM SMO 多分类的c++源码,自己编的,可以运行-SVM SMO multiple classifiers c++ of source code, own series, you can run
-
-
1下载:
matlab代码程序,利用Adaboost算法训练人脸图像和非人脸图像,通过迭代得到由多个弱分类器组合而成的强分类器,实现图片里的人脸检测。-Matlab code,Using Adaboost algorithm to train the face images and not face images, obtained strong classifier which is conprised of multiple weak classifiers by iteration , re
-
-
0下载:
This document can be a good candiate to start working on ECOC which used to solve multicalass problems by using multiple binary classifiers.
-
-
0下载:
基于支持向量机的人类活动识别,以日常生活中的10个活动进行识别。-Support Vector Machine (SVM) was first proposed in
1995 by Cortes and Vapnik [15] for solving classification and
regression problems. The solving strategy of SVM on the
multiple classification problems is com
-
-
0下载:
可以集成多个分类器的投票算法,采用python实现(The voting algorithm of multiple classifiers can be integrated and implemented by python.)
-
-
0下载:
针对不平衡样本的,可以综合多个分类器的投票算法。(For the unbalanced samples, the voting algorithm of multiple classifiers can be synthesized.)
-
-
1下载:
粒子群优化算起源于对鸟群、鱼群以及对某些社会行为的模拟,是一种基于群体智能的进化计算技术。而小生境技术则起源于遗传算法,这种方法能使基于群体的随机优化算法形成物种,从而使相应的优化算法具有发现多个最优解的能力。而多分类器集成技术则是通过多个分类器进行某种组合来决定最终的分类,以取得比单个分类器更好的性能。多分类器集成技术要求基元分类器不仅个体性能要好并且其差异度要大,这与小生境技术形成物种的能力具有很多内在的相似性。目前己经有研究者将小生境技术应用于多分类器集成,但由于传统的小生境技术仍然不完善
-