搜索资源列表
SVM
- 用C语言自己编写基于特定训练数据和测试数据的SVM程序,并用AUC对其评估-I have written using C language based on the specific training data and test data of the SVM procedure, and their assessment of AUC
svm
- 改进的支持向量机工具,直接输入测试集合训练集,得到训练模型的roc图像和auc值-Improved support vector machine tools, direct input test set training set, obtain training model roc images and auc values
Svm.tar
- 遗传算法优化支持向量机,并计算AUC值,计算准确率-Genetic algorithm optimization support vector machine, and calculate AUC value
code
- 1采用遗传算法对男女生样本数据中的身高,体重,喜欢数学,喜欢文学,喜欢运动,喜欢模式识别共6个特征进行特征选择,并基于所得到的最佳特征采用SVM设计男女生分类器,并计算模型预测性能(包含SE,SP,ACC和AUC )。提示:可以用6位的0/1进行编码,适应度函数可以考虑类似 。-1 genetic algorithm for boys and girls in the sample data of height, weight, like math, like literature, like
code
- 2采用PCA对男女生样本数据中的身高,体重,喜欢数学,喜欢文学,喜欢运动,喜欢模式识别共6个特征进行特征提取(自己设定选取的特征个数),并基于所得到的特征采用SVM设计男女生分类器,并计算模型预测性能(包含SE,SP,ACC和AUC )。-2 using PCA for boys and girls in the sample data height, weight, like math, like literature, like sports, like common pattern rec
code
- 采用SVM设计男女生分类器。采用的特征包含身高、体重、是否喜欢数学、是否喜欢文学、是否喜欢运动共五个特征。要求:采用平台提供的软件包进行分类器的设计以及测试,尝试不同的核函数设计分类器,采用交叉验证的方式实现对于性能指标的评判(包含SE,SP,ACC和AUC,AUC的计算基于平台的软件包)。-Using SVM classifier is designed for boys and girls. Characterized by the use of include height, weight
28 梁晏宾
- 1.采用遗传算法对男女生样本数据中的身高,体重,喜欢数学,喜欢文学,喜欢运动,喜欢模式识别共6个特征进行特征选择,并基于所得到的最佳特征采用SVM设计男女生分类器,并计算模型预测性能(包含SE,SP,ACC和AUC )。要求自行编写代码实现遗传算法。(1. using genetic algorithm based on the sample data of male and female students in height, weight, love mathematics, love li
classifier_D
- 使用SVM分类器来预测乳腺癌病人的预后(特征选择;分类器构建),评价模型时使用无被交叉验证,性能评价指标包括准确率,AUC,灵敏度,特异度。学会最基本的机器学习方法。可查看分发给大家的代码,以后遇到类似的问题,可用相似的思路和代码。(The SVM classifier was used to predict the prognosis of breast cancer patients (feature selection; classifier construction), and the
sklearn-SVM
- 支持向量机(SVM)——分类预测,包括核函数调参,不平衡数据问题,特征降维,网格搜索,管道机制,学习曲线,混淆矩阵,AUC曲线等(Support vector machine (SVM) - classification prediction, including kernel function parameter adjustment, unbalanced data problem, feature dimensionality reduction, grid search, pipelin