搜索资源列表
camerads.rar
- opencv摄像头实时人脸识别,支持各种摄像头,Real-time face recognition opencv camera, supports a variety of camera
gabor_face
- 人工智能人脸识别的基于gabor小波的matlab参考算法-Face Recognition Artificial Intelligence gabor wavelet-based reference algorithm matlab
faceRecognitionBasedOnWavelet
- 基于小波变换和神经网络的人脸识别:本论文围绕人脸识别问题对人脸特征提取及识别技术进行了研究。主要有:对人脸识别的研究工作进行了综述;在KL算法的基础上提出了新的基于KL的特征提取方法,克服了KL算法计算量大,计算时间长的缺点,-Based on Wavelet Transform and Neural Network Face Recognition: In this paper, issues surrounding the face recognition feature extractio
WaveandNNprotected
- High Performance Face Recognition Based on Wavelet and Neural Networks
Basedonwaveletanalysisandprincipalcomponentanalysi
- 基于小波分析和主成分分析的人脸识别研究随着社会的发展,社会各个方面对快速有效的身份验证的要求日益迫切。由 于生物特征是人的内在属性,具有很强的自身稳定性和个体差异性,因此是身份 验证的理想依据。其中利用人脸特征又是最自然直接的手段,相比其他生物特征, 它具有直接、友好、方便的特点,易于为用户接受。从而,人脸识别吸引了越来 越多来自计算机视觉和信号处理等领域的关注,成为模式识别、图像处理等学科 的研究热点。-Based on wavelet analysis and princ
A_Study_og_Face_Recognition_Methods_Baced_on_Wavel
- 针对灰度图像,提出一种基于知识的人脸检测方法。 提出了一种给予支持向量机的人脸检测方法。 提出了一种基于小波分解的LDA人脸识别方法。 提出了一种基于小波和DCT的人脸识别方法。 提出了一种机遇CEDT和支持向量机的人脸分类和识别方法。 -For gray-scale images, a knowledge-based face detection methods. A support vector machine method of face detection. A wa
Facerecognition
- 人脸识别因其在安全验证系统、信用卡验证、医学、档案管理、视频会 议、人机交互、系统公安(罪犯识别等)等方面的巨大应用前景而越来越成为 当前模式识别和人工智能领域的一个研究热点。 本文提出了基于24位彩色图像对人脸进行识别的方法,介绍的主要内容是图像处理,它在整个软件中占有极其重要的地位,图像处理的好坏直接影响着定位和识别的准确率。本软件主要用到的图像处理技术是:光线补偿、高斯平滑和二值化。在识别前,先对图像进行补光处理,再通过肤色获得可能的脸部区域,最后根据人脸固有眼睛的对称性来确
MoAT7.1
- This paper identifies a novel feature space to address the problem of human face recognition from still images. This based on the PCA space of the features extracted by a new multiresolution analysis tool called Fast Discrete Curvelet Transfo
FaceRecognitionBasedonWaveletTransform
- 基于小波变换的人脸识别代码本代码对图像进行小波分解,然后又用最近邻方法实现了图像的识别。-Face Recognition Based on Wavelet Transform code-wavelet based face recognition, the code of the image wavelet decomposition, and then with the nearest neighbor method to achieve the image recognition!
pcalda
- 首先进行小波变换,在此基础上进行pca特征提取,在进行lda特征提取,用于人脸识别-First, wavelet transform, in this based on pca feature extraction, feature extraction during lda for face recognition
2DLDAwiththeSVM-basedfacerecognitionalgorithm
- 二维线性鉴别分析(2DLDA)算法能有效解决线性鉴别分析(LDA)算法的“小样本”效应,支持向量机 (SVM)具有结构风险最小化的特点,将两者结合起来用于人脸识别。首先,利用小波变换获取人脸图像的低频分量,忽 略高频分量:然后,用2DLDA算法提取人脸图像低频分量的线性鉴别特征,用“一对多”的SVM 多类分类算法完成人脸 识别。基于ORL人脸数据库和Yale人脸数据库的实验结果验证了2DLDA+SVM算法应用于人脸识别的有效性。-”Small sample size”problem
waveannprotected
- Wavelet transforms are used to reduce image information redundancy because only a subset of the transform coefficients are necessary to preserve the most important facial features such as hair outline, eyes and mouth. We demonstrate experimentally th
Face_and_Face_exsipression_Recognition
- One of Biometrics fields is face recognition & face expression recognition ... 1- In face recognition .. we need to design authentication program by training a neural network ,there are two source codes..one of them is based on Discrete Wavelet Tr
Face-recognition
- 基于小波和傅立叶变换的人脸识别,具有较好的参考价值。-Based on wavelet and Fourier transform face recognition, and has a good reference value.
wavelet-transform-using-knn
- 基于双低频小波变换和k近邻分类器的人脸识别算法源程序-Dual low frequency wavelet transform and k-nearest neighbor classifier based face recognition algorithm source
Improved-ICA-face-recognition
- 针对传统的ICA算法存在的计算复杂度过高,训练和识别消耗时间过多的问题,通过对一般的用于人脸识别的小波变换(WT)方法加以改进,实现了一种基于WT的ICA算法-Spend too many time-consuming problem of high training and recognition complex calculations exist for the traditional ICA algorithm to be improved by the method generally
Face-Recognition-Based-on-PCA-on-Wavelet-Subband.
- Face Recognition Based on PCA on Wavelet Subband
gabor
- 基于gabor小波的人脸识别程序,建立了不同方向和尺度的gabor滤波器-Gabor wavelet based face recognition program, established in different directions and scales gabor filter
Wavelet-network-face-recognition
- 基于小波和神经网络的人脸识别系统,里面含有GUI界面-Wavelet and neural network-based face recognition system
Face Recognition Method Based on Gabor and ANN
- 基于Gabor小波变换和人工神经网络的人脸识别算法(Face Recognition Method Based on Gabor Wavelet Transform and Artificial Neural Network)