资源列表
bppppp
- matlab下用bp人工神经网络进行短期电力负荷预测-Matlab under short-term power load forecasting using artificial neural network bp
DeepLearnToolbox
- matlab深度学习工具箱,有CNN DBN SAE多种模型,值得拥有!-Matlab depth learning toolbox, there are a variety of models of CNN DBN SAE, worth having!
PRV123ECG
- 利用EEMD对心率变异性信号进行分解并计算出心率变异性的频域参数-Frequency domain parameters of heart rate variability by eemd decomposition technology
RNN
- 在MATLAB环境下利用递归神经网络计算八位二进制加法-Using the recurrent neural network to compute the eight- bit binary addition
SOM-dataget
- 基于SOM算法的采油机故障检测,对比其他短发有很大的优点,适合初学者学习!-Production machine fault detection based on SOM algorithm, compared with other hair has a lot of advantages, for beginners learning!
Hopfield2
- 某机构对20所高校的科研能力进行了调研和评价,试根据调研结果中较为重要的11个评价指标的数据,并结合离散Hopfield神经网络的联想记忆能力,建立离散Hopfield高校科研能力评价模型。-A mechanism for 20 universities scientific research ability of research and uation, test according to the research results of 11 important uation index
smokedetection
- 用VS2010和OPENCV编写的关于视频烟雾检测的程序,运行效果很好-With VS2010 and OPENCV prepared on the video smoke detection procedures, running very well
fdICA
- 本代码主要提供了在频域使用fastica进行盲源分离,并且解决了频域的排列和增益两个歧义性问题。-This code mainly provides the use of fastica in the frequency domain for blind source separation, and solves the frequency domain arrangement and gain of two ambiguity problems.
F16_dyn
- F16战斗机四元素法下飞机动力学方程,可以在MATLAB环境下条用进行仿真-the model of F16 fighter aircraft dynamics equation under four element method
neutral-network-tensorflow
- 使用tensorflow实现几类深度学习,如卷积神经网络、自回归神经网络、动态神经网络等-Use tensorflow to achieve several kinds of deep learning, such as convolution neural network, recurrent neural network, dynamic neural network
advanced-function-tensorflow
- 使用tensorflow来实现更高级的功能,例如多gpu并行计算、tensorboard可视化-Tensorflow to use more advanced features, such as multi-gpu parallel computing, tensorboard Visualization
gongjiaopaibanxitong
- 基于遗传算法的公交排版系统分析,包括公交线路模型仿真和公交排版问题模型设计两部分,均可直接运行-Based on the genetic algorithm of public transit system analysis, including bus line model simulation and bus layout problem model design two parts, can be run directly