资源列表
pinv
- //奇异值分解法求广义逆 //本函数返回值小于0表示在奇异值分解过程, //中迭代值超过了60次还未满足精度要求. //返回值大于0表示正常返回。 //a-长度为m*n的数组,返回时其对角线依次给出奇异值,其余元素为0 //m-矩阵的行数 //n-矩阵的列数 //aa-长度为n*m的数组,返回式存放A的广义逆 //eps-精度要求 //u-长度为m*m的数组,返回时存放奇异值分解的左奇异量U //v-长度为n*n的数组,返回时存放奇异值分解的左奇异量
least_squares_phase_unwrapping_algorithm
- 详细讨论了INSAR技术中相位解缠最小二乘方法的算法实现;并提出改进的加权最小二乘算法的实现思路-INSAR techniques are discussed in detail in the method of least squares phase unwrapping algorithm and suggestions for improvement of the weighted least squares algorithm implementation ideas
Berlekamp_Massey
- 移位寄存器中的基础算法,Berlekamp Massey算法-The basis of the shift register algorithm, Berlekamp Massey algorithm
NESTA_v1.0
- NESTA,非常好的优化算法,The algorithm uses two ideas due to Yurii Nesterov. The first idea is an accelerated convergence scheme for first-order methods, giving the optimal convergence rate for this class of problems. The second idea is a smoothing technique t
OMP
- 正交匹配追踪算法,用于稀疏信号恢复,包括算法与实验-sparse signal recovery orthogonal matching pursuit
AlgorithmsforNonlinearEquations
- 非线性方程组求解的经典算法,例如牛顿法,两点割线法,最快下降法-Solving nonlinear equations of classical algorithms, such as Newton method,bi-section method,the fastest descent method, etc.
inv
- 对矩阵求逆,根据提示在visual c++运行环境中输入矩阵及相关参数即可求出逆矩阵-Of matrix inversion, according to prompts in visual c++ runtime environment, type the matrix and related parameters can be obtained inverse matrix
AcousticTool
- 这个是计算声传播的各种模型 包括简正波kraken波数积分scooter等模型 有很好的学习价值 -a system program for acoustic propagation calculation
fredholm
- 第二类Fredholm积分方程的数值解。 所谓积分方程就是积分号内有未知函数的方程-Second numerical solution of Fredholm integral equation
paiduilun
- 模拟顾客服务过程,顾客到达为泊松分布,时间间隔为指数分布。一个服务窗口。-Simulation of the process of customer service, customers arrive for the Poisson distribution, the time interval for the exponential distribution. A service window.
suntime
- 根据当地的经纬度,准确计算出日出日落的时间,可以用于各个领域。-Sunset time calculated based on latitude and longitude
optics-VCPP
- Optics聚类算法 OPTICS没有显示地产生一个数据集合簇,它为自动和交互地聚类分析计算一个簇次序。这个次序代表了数据基于密度地聚类结构。它包含地信息,等同于从一个宽广地参数设置范围所获得的基于密度的聚类-Optics do not show clustering algorithm OPTICS to produce a collection of data clusters, it is automatically and interactively computing cluster