资源列表
机器学习启蒙源码
- 机器学习启蒙源码,,python,,格式 .ipynb(Source code for machine learning)
rls
- 电池模型的参数辨识,利用端电压的实际值和估计值,得到相关的7个参数(Parameter identification of battery model)
程序模拟数据及论文
- 自己按论文的逻辑写的有共享部分的网络dea,希望大家指正错误(Chain network DEA model)
电动汽车充电的GA算法
- 电动汽车充电的GA算法,体现了电动汽车并网的问题解决方案。(The GA algorithm for electric vehicle charging reflects the solution to the problem of grid connection of electric vehicles.)
chp6-8
- 费康abaqus在岩土工程中的应用第6章到第8章代码(Application of Fei Kang ABAQUS in geotechnical engineering 6 chapters to 8 chapters)
matlab RPCA程序代码
- rpca程序代码,是朋友做的,希望对大家的学习和生活能有所帮助,谢谢大家(RPCA program code, is a friend to do, and I hope that everyone's learning and life can help, thank you.)
全车汽车车辆模型model--simulink
- 车辆模型,希望能对大家的学习和生活有所帮助,谢谢大家。(Vehicle model, we hope to help everyone's learning and life, thank you.)
Kinematic hardening plasticity
- nice case for plasticity simulation-Vumat for abaqus-Kinematic hardening
Q4_1
- 已知(10,6)系统循环码的生成多项式为:g(x)=x4+x+1,请设计该循环码的编码器。输入随机码元序列长度至少1000位。按照错误概率Pe随机产生差错图样,得到实际接收码字。 根据接收到的码字进行译码,计算误码率。调整Pe的大小,画出误码率与Pe之间的关系曲线。程序难度不大,如需要其他参数请自行调整。有问题可以私聊。(The generating polynomial of known (10, 6) system cyclic codes is g (x) =x4+x+1, please
py3-neural-network-master
- Python3.6实现神经网络算法,经过mnist数据集测试后表现良好,准确率约为95%-96%。 /src 为源代码 /data为mnist算集(This is a code samples for "Neural Networks and Deep Learning" using python3.)
31767671CNLSE
- Coupled NLSE solved by SSFM method in Matlab
Graph
- 人工蜂群算法,ABC,最优解,最优路径,随机产生的路径中找到最优的解(Practical Application of Artificial Bee Colony Algorithm)