资源列表
PMSM_SMO
- 永磁同步电机滑膜控制,控制效果比PID好,可以学习一下。-Synovial PMSM control, PID control is better than good, you can learn about.
LightNet-master
- 目前最轻量级别的深度学习源码,采用CNN实现高精度识别,与目前流行的Caffe相比,具有实现灵活,可迁移程度高等优势,值得深入学习!-Currently the lightest level of deep learning source, using CNN to achieve high-precision identification, compared with the current popular Caffe, with the realization of flexible, hi
yu-jiang-Paper
- 这是一篇IEEE论文中的仿真代码,是关于鲁棒自适应动态规划的-this is a IEEE paper about ADP
ewt
- 经验小波变换,一种新的自适应信号处理方法-Empirical wavelet transform, a new adaptive signal processing method
LMDP6Data-expansion
- LMD算法利用极值平均、边界局部特征尺度延拓、HDJ极值延拓法、基于ISBM延拓、平行延拓法等对数据拓展,降低端点效应。-The LMD algorithm uses the extreme value average, the boundary local characteristic scale extension, the HDJ extreme value extension method, based on the ISBM extension, the parallel extens
continuous-time-algorithm
- 多智能体一致性算法,此算法通过交流多个机器人的位置信息,最终实现所有机器人位置的一致。-multi agent consensus algorithm this algorithm can make multi robots to be consensus.
PSO-LSSVM
- 利用改进PSO算法对LS-SVM进行参数优化,参数 和 的取值范围分别为 和 ,粒子种群数量为 25,迭代次数为 100,惯性权重因子 和 取0.9和0.1,学习因子 和 均取2。-The parameters of PS-SVM are optimized by using the improved PSO algorithm. The range of parameters is 25, the number of particles is 25, the number of iterati
PSO-LSSVM-CLASS
- 经过优化得到的参数组,利用优化的参数构建LS-SVM模型,然后使用训练样本对其进行训练。 利用训练后的LS-SVM对测试样本进行分类,-The optimized parameters are used to construct the LS-SVM model with optimized parameters, and then trained using training samples. Using the trained LS-SVM to classify the tes
BP神经网络运动状态分类
- 该程序可以通过训练集对所构建的BP神经网络进行训练,并能通过测试集,即对不同的运动状态进行分类。(The program can train the constructed BP neural network through the training set, and can classify the different motion states through the test set.)
GAaPSO
- 遗传-粒子群算法 PSO-GA算法 解决多目标优化算法问题,针对最优解求解可得到更好的解,接近最优的目标值。(Genetic algorithm (PSO) PSO-GA algorithm is used to solve the multi-objective optimization problem, and the better solution is obtained for the optimal solution, and the near optimal target valu
Class_3_Code
- 将concrete_data.mat文件导入到MATLAB中,其中attributes为影响混凝土抗压强度的7个输入变量,strength为混凝土的抗压强度,即输出变量; 将整个数据集中的103个样本随机划分为训练集与测试集,其中训练集包含80个样本,测试集包含23个样本; 将训练集与测试集数据进行归一化; 建立BP神经网络,并训练; 利用训练好的BP神经网络对测试集中的23个样本的抗压强度进行预测; 输出结果并绘图(真实值与预测值对比图)(The concrete_data.mat
SOM神经网络的数据分类--柴油机故障诊断
- 根据燃油压力波的特性,完成柴油机故障诊断分类。(According to the characteristics of the fuel pressure wave, the diesel engine fault diagnosis is completed.)