资源列表
2SAT
- 对于给定的2-CNF,设计一个线性时间算法,判定其是否可满足。-given for the 2-CNF, design a linear-time algorithm that can determine whether they meet.
ncircle
- 给定n个大小不等的圆c , c , , cn 1 2 ,现要将这n个圆排进一个矩形框中,且要求各圆 与矩形框的底边相切。圆排列问题要求从n个圆的所有排列中找出有最小长度的圆排列。例 如,当n=3,且所给的3 个圆的半径分别为1,1,2时,这3个圆的最小长度的圆排列如图 所示。其最小长度为2 + 4 2 。-given n ranging from the size of the circle c, c,, cn 1 2
B64
- b64.java b64编码 这还不够长 这还不够长 这还不够长 -b64.java B64 coding that is not enough - this not enough - it has not been long enough that it has not been long enough not long enough that it has not been long enough it has not been long enough that it has not
sparsehash-0.2
- google的hash table库实现,非常高效-the hash table for achieving very high efficiency
QueueFromStack
- Microsoft 面试常考算法 Implementation of Queue using 2 Stacks.-interviews often test algorithm Implementation of Queue using two protocol stacks.
TravelGuideApp
- 最短路径和哈密顿通路,可以求得多条最短路径和哈密顿通路。-shortest path Hamiltonian path and can be obtained over the shortest path and Hamiltonian path.
MD511
- md5代码加密算法的源代码 md5代码加密算法的源代码-md5 code encryption algorithm source code encryption algorithm md5 the md5 source code encryption algorithm source code
host2
- 马踏棋盘算法编程,实现在棋盘上任意两点间的最短路径求解。-horse riding chessboard programming algorithm to achieve on the chessboard arbitrary 2:00 of finding the shortest path.
weekday
- 给年、月、日该程序转换成星期。该程序本人多次严正是对的。-to the year, month and day of the proceedings into weeks. I repeated the procedure on the stern.
GLVQBP
- 本算法采用LVQ竞争学习网络,本算法先用分类再用bp算法进行预测。-the algorithm used LVQ competitive learning networks, the algorithm using the classification algorithm reuse bp forecast.
10001
- 半数集问题 问题描述: 给定一个自然数n,由n开始可以依次产生半数集set(n)中的数如下。 (1) n∈set(n); (2) 在n的左边加上一个自然数,但该自然数不能超过最近添加的数的一半; (3) 按此规则进行处理,直到不能再添加自然数为止。 例如,set(6)={6,16,26,126,36,136}。半数集set(6)中有6个元素。 编程任务: 对于给定的自然数n,编程计算半数集set(n)中的元素个数。
lqx100003
- 最优合并问题 给定K个排好序的序列s1,s2,...,sk,用2 路合并算法将这k个序列合并成一个序列。 假设所采用的2路合并算法合并2个长度分另为m 和n的序列需要m+n-1次比较。试设计一个算法确定合并这个序列的最优合并顺序,使所需的总比较次数最少。-optimal merging given K platoons good sequence of sequence s1, s2 ,..., sk. using 2-way merger of this algorithm k se