资源列表
PNN网络代码
- 概率神经网络(Probabilistic Neural Network)是由D.F.Speeht博士在1989年首先提出,是径向基网络的一个分支,属于前馈网络的一种。它具有如下优点:学习过程简单、训练速度快;分类更准确,容错性好等。从本质上说,它属于一种有监督的网络分类器,基于贝叶斯最小风险准则。(Probabilistic neural network was first proposed by Dr. D.F.Speeht in 1989. It is a branch of radial
成功libsvm-3.1-[FarutoUltimate3.1Mcode]
- matlab 工具箱svm,具体添加操作可以参照百度,很容易找到(SVMlab toolbox on the instructions for use method descr iption (English), and use this tool kit to achieve a time series forecasting papers you want to help.)
network_learn
- 简单地实现全神经网络,适合深度学习的基础入门。(Simple implementation of the whole neural network, suitable for in-depth study of basic entry.)
lssvm
- 最小二乘支持向量机回归,四个插入数据分别为训练输入、训练输出、测试输入、测试输出。工具包+程序(Least squares support vector regression (SVM), the four inserted data are training input, training output, test input and test output)
简单PSO
- pso算法的改进与优化,即对粒子群算法惯性权重w与学习因子参数的约束。(pso algorithm is improved and optimized, that is, the constraints of the inertial weight w and the learning factor parameters of the particle swarm algorithm.)
PSIM_Professional_Version_9034
- psim 懂的人拿走不谢,最容易构建的仿真软件。(PSIM understands people who take away the most easily constructed simulation software.)
trkvj
- Suppressed carrier type differential phase modulation, Independent component analysis algorithm reduces the raw data noise, For feature reduction, feature fusion, correlation analysis.
BP神经网络L_M优化算法在地下水动态预测中的应用
- BP神经网络L_M优化算法在地下水动态预测中的应用(Application of BP neural network L_M optimization algorithm in groundwater dynamic prediction)
BP人工神经网络负荷预测模型的L_M训练算法
- BP人工神经网络负荷预测模型的L_M训练算法(L_M training algorithm for load forecasting model of BP artificial neural network)
5beed36fda984d1e05d681101a49a37e
- 实现遗传算法的应用,初步理解遗传算法的原理和怎样编程。(The application of genetic algorithm is applied to understand the principle of genetic algorithm and how to program it.)
神经网络预测
- 神经网络预测的一个经典算例,P矩阵的数据可以改,方便使用(A example of neural network)
putty
- a like wat ada dir use ssduuwd