资源列表
test_network
- 此代码基于主成分分析的角度对原数据进行主成分分析,有效的降低了分析的难度和分析的时间(This code based on principal component analysis of the original data of the principal component analysis, effectively reducing the analysis of the difficulty and analysis of time)
NR14
- newton raphson method
House Price Regression
- 经典的房价预测问题,用jupyter notebook编写的简单实现。使用XGBoost模块进行学习预测。(The classic price prediction problem, a simple implementation written in jupyter notebook. The XGBoost module is used for learning prediction.)
深度学习书
- 此书详细的介绍了各种人工智能的方法, 书中基本涵盖所有人工智能的方法,并且包含许多较新的方法。(This book introducing the different methods of deep learning, this book contains all of deep learning method, including some new algorithms.)
keras-master (1)
- Keras 示例代码,包括CNN,LSTM,CNN-LSTM等,非常全面。(Keras sample code, including CNN, LSTM, CNN-LSTM, and so on, is very comprehensive.)
06 机器学习
- 机器学习是研究如何使用机器来模拟人类学习活动的一门学科,本文档描述了机器学习的概念和相关应用(Machine learning is a subject that studies how to use machines to simulate human learning activities. This document describes the concept and application of machine learning.)
P3
- udacity term1 project 3(udacity term 1 project 3)
07 神经网络与深度学习
- 人工神经网络(Artificial Neural Networks,ANN)系统是 20 世纪 40 年代后出现的。它是由众多的神经元可调的连接权值连接而成,具有大规模并行处理、分布式信 息存储、良好的自组织自学习能力等特点。BP(Back Propagation)算法又称为误差 反向传播算法,是人工神经网络中的一种监督式的学习算法。BP 神经网络算法在理 论上可以逼近任意函数,基本的结构由非线性变化单元组成,具有很强的非线性映射能力。(The Artificial Neural Network
08 进化算法
- 该资料讲述的进化算法的相关概念,发展历史,以及相关编程示例。(The related concepts, history, and related programming examples of the evolutionary algorithms are described.)
An Introduction to Statistical Learning
- 统计学的介绍,入门书是一门人工智能必须看的数学书,看完之后,可以豁然开朗(Statistical introduction, Primer is an artificial intelligence must see the mathematical book, after reading, you can suddenly)
RNN
- RNN实现代码,用RNN实现简单加法,没用运用python里面的包(RNN code,RNN with simple addition, not by the use of Python inside the package)
hellowd_bsp
- MATLAB仿真,不错的总结,适合大家参考(MATLAB Simu, nice summary , suitable for references)