资源列表
Using-Ranking-CNN-for-Age-Estimation-master
- 基于深度学习 的年龄识别,ranking age cnn(deep learning ,ranking age cnn)
test1
- 神经网络,深度学习上非常经典的例子-RNN循环神经网络,使用mnist数据集,代码简单易懂,学习方便(Neural network, deep learning is a very classic example -RNN circular neural network, the use of mnist data sets, the code is easy to understand, easy to learn)
PSO优化BP神经网络 MATLAB版本2016a
- PSO优化BP神经网络 MATLAB版本2016a PSO优化BP神经网络的权值和阈值 有详尽的注释 并结合2016a的新版本函数特性,优化了算法(PSO optimization BP neural network MATLAB version 2016a PSO optimization BP neural network weights and thresholds Detailed comments and combined with the 2016a new version of t
势场法
- 人工势场法,机器人自动避障,程序可以运行,没有错误(Artificial potential field method, robot automatic obstacle avoidance)
BP caipiao
- BP神经网络彩票预测脚本 参照了涂晖对于 mablab神经网络提到的几个函数。(The BP neural network lottery prediction scr ipt refers to several functions mentioned in the mablab neural network.)
BP神经网络-鸢尾花分类代码+文档
- BP神经网络-鸢尾花分类代码+文档,可以直接运行(BP neural network - iris code + document, can run directly)
TensorFlow实战Google深度学习框架
- TensorFlow实战Google深度学习框架,非常详细,推荐实用(TensorFlow real Google deep learning framework, very detailed, recommended practical)
D_S证据理论C++源码
- DS 证据理论(Dempster-Shafer envidence theory)也称为DS理论。是一种处理不确定性问题的完整理论。它不仅能够强调事物的客观性,还能强调人类对事物估计的主观性,其最大的特点就是就是对不确定性信息的描述采用“区间估计”,而非“点估计”,再区分不知道和不确定方面以及精确反映证据收集方面显示出很大的灵活性。
tensorflow-CNN-CIFAR-10-master
- CNN实现图像数据的分类,有数据库下载代码(CNN implements the classification of image data, and there is a database download code)
pycuda-2017.1.1.tar
- 矩阵相乘的并行运算的算法,运算效率可以轻松提高近100倍。是进行人工智能研究及深度学习先关研究的必备并行算法。(The algorithm of parallel operation of matrix multiplication can easily increase the operation efficiency by nearly 100 times. It is a necessary parallel algorithm for the study of artificial in
Untitled 14 BP NN
- 用bp神经网络对故障信号进行分类,通过训练和测试数据,来验证结果(Using bp neural network to classify fault signals and verify results by training and testing data)
Untitled0000000
- 通过pso优化rbf神经网络来提高信号的预测效果,以达到比单独使用rbf神经网络更好的预测效果(Optimize rbf neural network through pso to improve signal prediction performance to achieve better prediction effect than using rbf neural network alone)