资源列表
Autoencoder_Code
- Hilton的自动编码器实现代码(rbm based on matlab)
RBM-DBN
- 有限玻尔兹曼机、深度置信网的Matlab实现,用mnist数据进行验证,对理解深度学习原理有帮助。(A Finite Boltzmann machine and deep belief network are implemented in MATLAB and verified with MNIST data. It is helpful to understand the principle of deep learning.)
RL
- 强化学习 DQN代码,和通信相关,利用python进行训练,大家可以看看(reinforcement learning)
TFIDF算法的C#实现
- 支持英文分词,无中文分词。采用Centivus.EnglishStemmer.dll库
TransferEntropy1
- 传递熵算法代码,用于分析不同波动之间的关系,包括时延、权重等仅供参考(Transfer Entropy Algorithm Code, used to analyze the relationship between different fluctuations, including delay, weight, etc. for reference only)
Python深度学习.pdf+代码
- 本书由Keras之父、现任Google人工智能研究员的弗朗索瓦?肖莱(Franc?ois Chollet)执笔,详尽介绍了用Python和Keras进行深度学习的探索实践,包括计算机视觉、自然语言处理、产生式模型等应用。书中包含30多个代码示例,步骤讲解详细透彻。由于本书立足于人工智能的可达性和大众化,读者无须具备机器学习相关背景知识即可展开阅读。在学习完本书后,读者将具备搭建自己的深度学习环境、建立图像识别模型、生成图像和文字等能力。(This book is written by Franc
RNN_matlab
- 用Matlab实现了最基本的RNN神经网络(Matlab to achieve the most basic RNN neural network)
主成分分析及matlab实现
- 主成分分析和主成分回归的MATLAB实现,含程序,详细(MATLAB implementation of principal component analysis, including program)
Python神经网络编程.pdf+代码
- 本书首先从简单的思路着手,详细介绍了理解神经网络如何工作所必须的基础知识。第一部分介绍基本的思路,包括神经网络底层的数学知识,第2部分是实践,介绍了学习Python编程的流行和轻松的方法,从而逐渐使用该语言构建神经网络,以能够识别人类手写的字母,特别是让其像专家所开发的网络那样地工作。第3部分是扩展,介绍如何将神经网络的性能提升到工业应用的层级,甚至让其在Raspberry Pi上工作。(This book begins with a brief introduction to the basi
Machine Learning
- 作者是Prateek Joshi.人工智能专家。本书注重于对基于机器学习中深度学习内容的分析,并附上了许多经典案例,非常值得一读。(The writer is an expert in Prateek Joshi. AI. This book focuses on the analysis of in-depth learning in machine-based learning, and attaches many classic cases, which are worth reading
免疫优化算法
- 是分布式电源的选址定容的免疫优化算法算法,是最基本的遗传算法,基本实现了选址定容的功能(It is an inheritance algorithm for location and capacity of distributed power supply and the most basic genetic algorithm. It basically realizes the function of location and capacity determination.)
matlab Q学习仿真
- 基于Q学习算法,寻找最优路径,是强化学习中的一种,很实用,代码很详细,有备注(Searching for the optimal path based on Q algorithm is a kind of reinforcement learning. It is very practical, the code is very detailed, with notes.)