资源列表
Python Neo4j医药知识图谱自动问答系统源码
- Python+Neo4j医药知识图谱自动问答系统源码,知识图谱构建,自动问答,基于kg的自动问答。以疾病为中心的一定规模医药领域知识图谱,并以该知识图谱完成自动问答与分析服务。(Python+Neo4j Medical Knowledge Atlas Automatic Question and Answer System source code, knowledge atlas construction, automatic question and answer, based on kg a
小波神经网络预测代码
- 小波神经网络预测的完整的MATLAB代码。有数据,可直接运行实现。(Wavelet neural network prediction of complete MATLAB code. With data, you can run the implementation directly.)
svmtrain
- matlab系统原来自带的svmtrain函数和svmclassify函数。 有需要的在2017a以前的版本里面也能找到! 在新版本中(2018以后),你再运行有svmtrain函数的文件,我试了一下结果是,就算你拷贝过来原来的svmtrain函数,还是运行不出来。。所以各位可以下载试一下。。我建议还是转为最新支持的fitcsvm函数吧!(svmtrain and svmclassify function)
雷达辐射源在线分选程序
- 基于核聚类的雷达信号在线分选程序,比较经典(On-line Radar Signal Sorting Procedure Based on Kernel Clustering)
som
- 随机产生5类二维坐标系中的数,使用SOM网络进行无监督聚类,将产生的随机数自动聚成五类,并将结果用图像直接显示出来,生成训练好的网络权值(Five kinds of random numbers in two-dimensional coordinate system are generated randomly, and unsupervised clustering is carried out using SOM network. The random numbers generated
CNN
- 这是一个为1D心电图数据训练而设计的神经网络。(this is a Covoluntional Neural Network deisigned for 1D ECG data training.)
Matlab code for multi-agent control
- 多智能体的编队控制,适合多智能体的编队或一致性研究的初学者学习(Multi-Agent Formation Control, Suitable for Initial Scholars of Multi-Agent Formation or Consistency Research)
统计学习方法-电子书及代码实现-李航
- 统计学习书籍和代码,非常非常好的资料,你可以下载的学习。(Machine learning actual supporting code, very very good information, you can download the learning.)
强化学习
- 基础的强化学习Q-learning算法,对初学者对Q-learning算法得理解比较有帮助,程序包括运行脚本,Q-learning算法脚本以及环境脚本。(Basic reinforcement learning Q-learning algorithm is helpful for beginners to understand Q-learning algorithm. Programs include running scr ipt, Q-learning algorithm scr ipt
time-series-forecasting-keras-master
- 基于ARIMA模型和LSTM模型,提出一种高性能得时间序列预测算法(Based on ARIMA model and LSTM model, a high performance time series prediction algorithm is proposed.)
AcousticChannelSimulator
- 计算海洋声学 深海声道模型 射线声学方法(Computational ocean acoustic deep-sea channel model)
遗传算法优化的BP神经网络
- 遗传算法优化BP 神经网络是用遗传算法来优化BP 神经网络的初始权值和阔值,使优化 后的BP 神经网络能够更好地预测函数输出。遗传算法优化BP 神经网络的要素包括种群初 始化、造应度函数、选择操作、交叉操作和变异操作。(Genetic algorithm optimizes BP neural network by using genetic algorithm to optimize the initial weight and broad value of BP neural netwo