资源列表
Dijkstra算法的最短路径查询
- 最短路径算法的VB实现,最短路径的查询程序-shortest path algorithm VB, shortest path inquiry procedures
AstarPath
- 用VC6++对A*寻路算法的简单实现,在界面上点击鼠标就行.-VC6 right with A * search algorithm for a simple way to achieve the click of a mouse interface on the line.
背包问题的遗传算法解法vb
- 这是一用VB解决背包问题的遗传算法元程序,程序框架清楚,应用性强-This a backpack with VB solve problems of genetic algorithm yuan procedure is a clear framework and application-
一些解决TSP问题的算法及源代码模拟退火算法
- 一些模拟退火算法及元代码,可以用于解决TSP问题的等,我已经验证过了 可以的,速度比较快,大家可以下载试试! -some simulated annealing yuan and the code can be used to solve problems such as TSP, I can be tested, and faster speed, you can download a try!
多维函数优化程序
- 用JAVA语言编写,包括PSO(Particle swarm optimization, 中文译名为粒子群优化或微粒群算法), DE (Differential evolution, 中文译名为差分进化或差异演化)等算法,有一些不带约束和带约束的算例(如Michelawicz的几个问题)。使用说明见usage.txt、RUNExample.bat和程序中的注释。 -with Java language, including the PSO (Particle swarm optimizat
差别算法MATLAB代码及粒子群算法的介绍
- 差别算法matlab代码(differential algorithm)及粒子群算法的介绍-difference algorithm Matlab code (differential algorithm) and the PSO algorithm introduced
传教士和野人过河
- 在VC的环境下,用C++编程实现人工智能中的A*树的搜索算法,得到一个最优的过河方案。-in VC environment, the C programming AI * A tree search algorithms, to be an optimal program of the river.
TSP.ZIP
- 用pascal写的hopfield神经网络解决TSP问题的代码。-with the neural network solution hopfield TSP code.
遗传算法解TSP
- 实现用固定变异概率和自适应变异概率解tsp问题的比较,自适应式算法采用基于种群差异度的自适应算法,详见实验报告-achieve fixed mutation probability and Adaptive Solutions tsp mutation probability of comparison, Adaptive Algorithm-based differences in the populations adaptive algorithm, as detailed experime
1.25外点法终稿
- vc编程实现bp神经网络,比较实用!!还 有一些别的程序也在里面,希望能有用!! -vc Programming bp neural network, more practical! ! There are also some other procedures are also inside the hope of useful! !
hopfield-朱林
- 本文将介绍Hopfield神经网络(HNN)的产生、发展及基本原理,重点是对离散Hopfield网络(DHNN)的说明。包括:网络结构、涉及的算法和神经网络的训练方法;具体实例描述网络的联想去噪功能;进行计算机仿真计算及仿真结果说明;仿真程序的说明文档(仿真程序附后);最后将对DHNN的最新发展状况作简单阐述。
Fnn_pid
- 基于神经网络的PID控制不是用神经网络来整定PID的参数,而是用神经网络直接作为控制器,通过训练神经网络的权系数间接地调整PID参数。-based on neural network PID control is not using neural networks to PID parameters, Rather, as a neural network controller directly, through the training of the neural network weight