资源列表
BOLTZMAN源码
- BOLTZMAN神经网络C++源代码,经过测试运行,欢迎使用,欢迎指导!-BOLTZMAN neural network C source code, the test run, welcomed the use of welcome guidance!
ART1源码
- ART1神经网络C++源代码,经过测试运行,欢迎使用,欢迎指导!-ART1 neural network C source code, the test run, welcomed the use of welcome guidance!
遗传算法-最优函数值
- 此遗传算法功能强大,界面操作,能很方便的设置遗传算法的各个参数。运行过程中,图形显示寻优过程。以及列表显示运行的详细结果。-this powerful genetic algorithms, interface operation, can very easily be set genetic algorithm parameters. Process, graphics optimization process. Operation and table shows the detailed r
PSO_basic
- 这是一个基本的微粒群算法,适合刚入门的朋友看一看。-This is a fundamental particle swarm algorithm, suitable for beginners look at the friends.
GPdata-3.0.tar
- 标准的GP源代码,由Andy Singleton维护,在linux下运行,编译方法可参照内带的说明,搞演化计算的朋友值得一看-standard GP source code, by Andy Singleton maintenance, running under Linux, compile method can be brought to the light show that engaging in evolutionary computation is worth looking at
zhong
- 系统聚类算法K-means 属于聚类分析中一种基本的划分方法,常采用误差平方和准则函数作为聚类准则,该算法在处理大数据集时是相对可伸缩且高效率的,同时具有潜在的数据并行性。但是这种算法依赖于初始值的选择以及数据的输入顺序;此外,当运用误差平方和准则函数测度聚类效果时,如果各簇的形状和大小差别很大,为使误差平方和 Jc 值达到最小有可能出现将大的聚类簇分割的现象。-system clustering algorithm K-means cluster analysis is a basic met
c 5.5
- 本人用c作的c 5.5,一种决策书的开发工具,感兴趣的可以一起研究-I used for the c c 5.5, a decision on the development tools, together with interest the study
BP神经网络C程序
- 比较实用的一个BP神经网络实现的C++程序,希望对大家有用处-a more practical BP neural network in C procedures, we hope to be useful
improvedGA
- 改进的遗传算法程序用于优化PID控制器中的两个参数-improved genetic algorithm optimization procedures for the PID controller two parameters
模糊推理程序
- 为缩短编码长度,提高优化速度,采用简单的3*5=15条模糊规则-to shorten the length coding, improve speed optimization, a simple 3 * 5 = 15 fuzzy rules
隶属度函数计算程序
- mf()计算模糊集合中论语元素的隶属度,y代表中心值,z代表分布参数,隶属度函数采用对称三角函数-mf () calculated fuzzy set Analects elements of membership, y values represent the Center, z representatives distribution parameters, membership function symmetrical trigonometry
fuzzy_pid
- 两种控制方式的性能比较:模糊控制与PID控制-two ways to control the performance comparison : fuzzy control and PID control