资源列表
基于BP网络算法的齿轮箱故障诊断程序
- 基于BP神经网络的故障诊断MATLAB代码,亲测有效,欢迎下载。(Based on BP neural network fault diagnosis MATLAB code, pro test is effective, welcome to download.)
Deep Learning with Python
- 本书由Keras之父、现任Google人工智能研究员的弗朗索瓦?肖莱(Fran?ois Chollet)执笔,详尽介绍了用Python和Keras进行深度学习的探索实践,涉及计算机视觉、自然语言处理、生成式模型等应用。书中包含30多个代码示例,步骤讲解详细透彻。由于本书立足于人工智能的可达性和大众化,读者无须具备机器学习相关背景知识即可展开阅读。在学习完本书后,读者将具备搭建自己的深度学习环境、建立图像识别模型、生成图像和文字等能力。(Deep Learning with Python intr
决策树
- 决策树算法基于python语言的具体实现实例(Implementation of decision tree algorithm based on Python language)
梯度下降求解逻辑回归
- 用梯度下降求解逻辑回归基于python语言的实现(Using gradient descent to solve logistic regression based on Python language)
chapter4
- 遗传算法,反演出线性方程非线性方程的最优解,准确率较高(Genetic algorithm is the best solution to the nonlinear equation of linear equation, with higher accuracy.)
MATLAB
- matlab使用layrecnet实现循环神经网络rnn(Matlab uses recurrent neural network to implement recurrent neural network RNN.)
squeezeDet-master
- 一种应用于目标检测中同时满足上述所有约束条件的全卷积神经网络结构。在我们的网络中,使用卷积层不只是用来提取特征图,同时也是作为输出层去计算边界框(bounding box)和分类概率。我们模型中的检测管道(detection pipeline)只包含一个神经网络的前向通路,因此它运行起来是极其迅速的。我们的模型是全卷积结构的,因此可以达到小的模型规模和很高的能量利用效率。最后的实验表明我们的模型能达到很高的精度,在 KITTI 基准上达到了最高的精确度。(A fully convoluted n
tensorflow-resnet-master
- ResNet在2015年被提出,在ImageNet比赛classification任务上获得第一名,因为它“简单与实用”并存,之后很多方法都建立在ResNet50或者ResNet101的基础上完成的,检测,分割,识别等领域都纷纷使用ResNet,Alpha zero也使用了ResNet,所以可见ResNet确实很好用。(ResNet was proposed in 2015 and won the first place in the classification task of ImageNe
DenseNet-master
- 这篇文章是CVPR2017的oral,非常厉害。文章提出的DenseNet(Dense Convolutional Network)主要还是和ResNet及Inception网络做对比,思想上有借鉴,但却是全新的结构,网络结构并不复杂,却非常有效!众所周知,最近一两年卷积神经网络提高效果的方向,要么深(比如ResNet,解决了网络深时候的梯度消失问题)要么宽(比如GoogleNet的Inception),而作者则是从feature入手,通过对feature的极致利用达到更好的效果和更少的参数。(
bnn-master
- 一个高度优化的轻量深度学习前向框架,使用C/C++语言开发,跨平台,支持读取Caffe模型文件,主要处理卷积神经网络。与市面上大多数移动端解决方案不同,我们的量化压缩技术不仅针对模型的权重,还涉及到输入的特征向量压缩。针对这一特性我们在模型文件和内存大小得到裁剪的同时还对框架的性能做了大量优化。(A highly optimized lightweight deep learning forward framework, developed using C/C++ language, cross
dskpla
- MATLAB的函数、算法基本库和实例。 里面包含大量的运算函数,基本可以直接调用使用,提高效率(MATLAB function, algorithm base library and examples. It contains a lot of operation functions, which can be called directly to improve efficiency)
7-9
- 分别介绍了概率与数理统计概述、统计估计、假设检验、方差分析、回归分析、正交试验分析、聚类分析、判别分析和多元数据相关分析等内容,理论与实践相结合,向读者演示了matlab在数理统计中的应用。(It respectively introduces the outline of probability and mathematical statistics, statistical estimation, hypothesis test, variance analysis, regression