文件名称:kmeans1
-
所属分类:
- 标签属性:
- 上传时间:2013-08-14
-
文件大小:124.63kb
-
已下载:0次
-
提 供 者:
-
相关连接:无下载说明:别用迅雷下载,失败请重下,重下不扣分!
介绍说明--下载内容来自于网络,使用问题请自行百度
K-means算法,算法步骤如下:
Step1.利用式(2)计算距离矩阵D=(),其中=dist[i, j] ();
Step2.扫描坐标距离矩阵D,寻找距离的最大值和最小值,用式(3)计算limit;
Step3.扫描坐标距离矩阵D,寻找矩阵中距离最小的2个数据a,b,将数据a,b加入集合,={a,b},同时将数据a,b从U中删除,更新距离矩阵D;
Step4.利用 (4)式在U中寻找距离集合最近的数据样本t,如果小于limit,则将t加入集合,同时将t从集合U中删除,更新距离矩阵D,重复Step5,否则停止;
Step5.若i<k,i=i+1,重复步骤Step3、Step4,直至k个集合完成;
Step6.取集合中数据的算术平均值记作数据中心,并计算得到的坐标值,完成k个数据中心的选取。-Algorithm steps are as follows:
Step1. Type (2) is used to calculate the distance matrix D = (), including = dist [I, j] ()
Step2. Scan coordinate distance matrix D, looking for the maximum and the minimum distance, use type (3) calculate the limit
Step3. Scan coordinate distance matrix D, looking for matrix minimum distance of two data a, b, and the data to a, b to join the collection, = {a, b}, at the same time the data a, b is removed from the U, update the distance matrix D
Step4. Using (4) in the U find closest to the collection of data samples t, if less than the limit, then t join collection, at the same time t is removed from the set U, update the distance matrix D, repeat Step5, otherwise stop
Step5. If I < k, I = I+ 1, repeat steps Step3, Step4, until k collection is complete
Step6. Take the arithmetic mean of the collection of data for the data center, and to calculate the coordinates, to complete the selection of k data center.
The above steps distribution cu
Step1.利用式(2)计算距离矩阵D=(),其中=dist[i, j] ();
Step2.扫描坐标距离矩阵D,寻找距离的最大值和最小值,用式(3)计算limit;
Step3.扫描坐标距离矩阵D,寻找矩阵中距离最小的2个数据a,b,将数据a,b加入集合,={a,b},同时将数据a,b从U中删除,更新距离矩阵D;
Step4.利用 (4)式在U中寻找距离集合最近的数据样本t,如果小于limit,则将t加入集合,同时将t从集合U中删除,更新距离矩阵D,重复Step5,否则停止;
Step5.若i<k,i=i+1,重复步骤Step3、Step4,直至k个集合完成;
Step6.取集合中数据的算术平均值记作数据中心,并计算得到的坐标值,完成k个数据中心的选取。-Algorithm steps are as follows:
Step1. Type (2) is used to calculate the distance matrix D = (), including = dist [I, j] ()
Step2. Scan coordinate distance matrix D, looking for the maximum and the minimum distance, use type (3) calculate the limit
Step3. Scan coordinate distance matrix D, looking for matrix minimum distance of two data a, b, and the data to a, b to join the collection, = {a, b}, at the same time the data a, b is removed from the U, update the distance matrix D
Step4. Using (4) in the U find closest to the collection of data samples t, if less than the limit, then t join collection, at the same time t is removed from the set U, update the distance matrix D, repeat Step5, otherwise stop
Step5. If I < k, I = I+ 1, repeat steps Step3, Step4, until k collection is complete
Step6. Take the arithmetic mean of the collection of data for the data center, and to calculate the coordinates, to complete the selection of k data center.
The above steps distribution cu
(系统自动生成,下载前可以参看下载内容)
下载文件列表
kmeans1/9类配送结果.txt
kmeans1/9类配送结果.txt.bak
kmeans1/data2.txt
kmeans1/Debug/kmeans.obj
kmeans1/Debug/kmeans1.exe
kmeans1/Debug/kmeans1.pdb
kmeans1/Debug/vc60.pdb
kmeans1/kmeans.cpp
kmeans1/kmeans1.dsp
kmeans1/kmeans1.dsw
kmeans1/kmeans1.ncb
kmeans1/kmeans1.opt
kmeans1/kmeans1.plg
kmeans1/test.txt
kmeans1/Debug
kmeans1
kmeans1/9类配送结果.txt.bak
kmeans1/data2.txt
kmeans1/Debug/kmeans.obj
kmeans1/Debug/kmeans1.exe
kmeans1/Debug/kmeans1.pdb
kmeans1/Debug/vc60.pdb
kmeans1/kmeans.cpp
kmeans1/kmeans1.dsp
kmeans1/kmeans1.dsw
kmeans1/kmeans1.ncb
kmeans1/kmeans1.opt
kmeans1/kmeans1.plg
kmeans1/test.txt
kmeans1/Debug
kmeans1
本网站为编程资源及源代码搜集、介绍的搜索网站,版权归原作者所有! 粤ICP备11031372号
1999-2046 搜珍网 All Rights Reserved.