文件名称:fs_sup_relieff
介绍说明--下载内容来自于网络,使用问题请自行百度
Relief算法中特征和类别的相关性是基于特征对近距离样本的区分能力。算法从训练集D中选择一个样本R,然后从和R同类的样本中寻找最近邻样本H,称为Near Hit,从和R不同类的样本中寻找最近样本M,称为Near Miss,根据以下规则更新每个特征的权重:
如果R和Near Hit在某个特征上的距离小于R和Near Miss上的距离,则说明该特征对区分同类和不同类的最近邻是有益的,则增加该特征的权重;反之,如果R和Near Hit在某个特征上的距离大于R和Near Miss上的距离,则说明该特征对区分同类和不同类的最近邻起负面作用,则降低该特征的权重。(The correlation between feature and category in Relief algorithm is based on distinguishing ability of feature to close sample. The algorithm selects a sample R from the training set D, and then searches for the nearest neighbor sample H from the samples of the same R, called Near Hit, and searches for the nearest sample M from the sample of the R dissimilar, called the Near Miss, and updates the weight of each feature according to the following rules:
If the distance between R and Near Hit on a certain feature is less than the distance between R and Near Miss, it shows that the feature is beneficial to the nearest neighbor of the same kind and dissimilar, and increases the weight of the feature; conversely, if the distance between R and Near Hit is greater than the distance on R and Near Miss, the feature is the same. The negative effect of nearest neighbor between class and different kind reduces the weight of the feature.)
如果R和Near Hit在某个特征上的距离小于R和Near Miss上的距离,则说明该特征对区分同类和不同类的最近邻是有益的,则增加该特征的权重;反之,如果R和Near Hit在某个特征上的距离大于R和Near Miss上的距离,则说明该特征对区分同类和不同类的最近邻起负面作用,则降低该特征的权重。(The correlation between feature and category in Relief algorithm is based on distinguishing ability of feature to close sample. The algorithm selects a sample R from the training set D, and then searches for the nearest neighbor sample H from the samples of the same R, called Near Hit, and searches for the nearest sample M from the sample of the R dissimilar, called the Near Miss, and updates the weight of each feature according to the following rules:
If the distance between R and Near Hit on a certain feature is less than the distance between R and Near Miss, it shows that the feature is beneficial to the nearest neighbor of the same kind and dissimilar, and increases the weight of the feature; conversely, if the distance between R and Near Hit is greater than the distance on R and Near Miss, the feature is the same. The negative effect of nearest neighbor between class and different kind reduces the weight of the feature.)
(系统自动生成,下载前可以参看下载内容)
下载文件列表
文件名 | 大小 | 更新时间 |
---|---|---|
MAIN.m | 6316 | 2018-04-12 |
RELIEF.m | 1517 | 2017-12-22 |
reliefF.m | 5357 | 2018-04-07 |
本网站为编程资源及源代码搜集、介绍的搜索网站,版权归原作者所有! 粤ICP备11031372号
1999-2046 搜珍网 All Rights Reserved.