搜索资源列表
Levenberg-Marquardt
- Levenberg-Marquardt优化单应性矩阵,也可经过修改用于相机标定参数的优化
Levenberg-Marquarat算法
- 阻尼最小二乘法(即Levenberg-Marquarat算法),是Gauss-Newton算法的一种修*。-
LM-algo.rar
- 用gsl实现Levenberg-Marquardt算法,use gsl to implement Levenberg-Marquardt algo
The_Levenberg-Marquardt_Algorithm
- LM算法 老外写的The Levenberg-Marquardt (LM) algorithm is the most widely used optimization algorithm. It outperforms simple gradient descent and other conjugate gradient methods in a wide variety of problems. This document aims to provide an intuitiv
Levenberg-Marquardt_Method
- LM算法的c语言实现 拟合的函数为gauss函数-Levenberg-Marquardt Method
Levenberg-Marquardt
- Levenberg-Marquardt 信赖域方法求解非线性方程组的Matlab程序-Levenberg-Marquardt trust region method for solving nonlinear equations of the Matlab program
lm_matlab
- The Levenberg–Marquardt Method
levmar-2.3
- 最新的Levenberg Marquardt 算法。用于非线性最小二乘问题的参数估计和优化!-Latest Levenberg Marquardt algorithm. Nonlinear least squares problem for parameter estimation and optimization!
bpnnet_154
- L-M算法。除了动量法(基于梯度下降的训练算法)外,学习率自适应调整策略是BP算法改进的另一种途径,它利用Levenberg-Marquardt优化方法,从而使得学习时间更短。其缺点是,对于复杂的问题,该方法需要很大的存储空间。 -L-M algorithm. In addition to momentum (based on the gradient descent algorithm for training), learning rate adaptive strategy is to i
marq
- % Train a two layer neural network with the Levenberg-Marquardt % method. % % If desired, it is possible to use regularization by % weight decay. Also pruned (ie. not fully connected) networks can % be trained. % % Given a set of cor
lmfit
- Levenberg-Marquardt最小二乘拟合-Levenberg-Marquardt LeastSquares Fitting
levmar-2.3
- a copylefted C/C++ implementation of the Levenberg-Marquardt non-linear least squares algorithm
RunningLM
- matlab中使用LM训练方法计算XOR,3-bit Parity,regression等问题的收敛速度,比较其收敛率。-using LEVENBERG MARQUARDT in matlab to compute convergence rate
levmar-2.4
- A sparse variant of the Levenberg-Marquardt algorithm implemented by levmar has been applied to bundle adjustment, a computer vision/photogrammetry problem that typically involves several thousand variables
LmNet_PF
- LmNet PF 神经网络预测平台是公司基于最优神经网络算法(Levenberg-Marquardt动量项法)开发的通用预测平台工具。它是针对用户进行预测需要,快速构建神经网络应用的通用预测平台,它能解决包括销售量预测、销售价格预测、成本预测、市场潜力预测、新产品价格预测等方面的预测分析。功能包括:新建、修改网络模型;网络训练;网络仿真;误差分析;专家样本数据自动生成;节点配置;数据归一化处理;网络参数初始化设置等。~..~ -Neural Network Prediction LmNet
bpwl
- 使用Levenberg-Marquart算法(最小二乘法)对BP神经网络进行训练,克服了传统BP算法收敛慢,容易收敛于局部最小值等缺点-use Levenberg-Marquardt algorithm to overcome some disadvantages like slow convergence which traditional BP neural network usually has
LMprocess
- Levenberg-Marquardt优化-Levenberg-Marquardt optimization
Neuralnetworkstools
- 神经网络仿真工具,本程序是BP算法的演示程序, 其中的Levenberg-Marquardt算法具有实用价值.-Neural network simulation tool, this program is BP algorithm demo program in which the Levenberg-Marquardt algorithm has practical value.
LevenbergMarquardt_matlabcode_fromLourakis
- The Levenberg–Marquardt Method writed by Lourakis
levenberg.delphi
- Levenberg-Marquardt numerical algorythm in Delphi