搜索资源列表
noseecluster
- 聚类分析技术有着广泛应用.因为在对图像进行聚类分析时,通常缺少可资利用的先验知识,所以需要采用无监督的聚类算法.为了适应图像检索的需要,提出了一种新型的无监督聚类方法,即根据离群点信息来自动确定聚类算法的终止时机.此方法还弥补了现有聚类算法在离群点识别、使用上的缺欠.为验证其可行性,用其改进了CURE和ROCK两个经典算法.实验表明,改进后的两个算法都能自动终止,并能取得优于以往的聚类效果. -clustering analysis techniques have wide applicatio
ISODATA
- 在各种聚类算法中,ISODATA可以说是应用最广泛的。以与代表点的最小距离作为样本聚类的依据,因此比较适合各类物体在特征空间以超球体分布的方式分布,对于分布形状较复杂的情况需要采用别的度量。
ISODATA1
- ISODATA聚类快速实现代码,运行test_isodata观测测试结果,算法可用于点模式匹配前的特征分类。
FuzzyEntropyBasedPost-ProcessingMethodforC-MeanClu
- 提出了一种结合C2均值聚类算法和模糊熵的图像分割方法, 该方法先采用C2均值聚类算法对含噪图像进行初步分割, 再利用模糊熵准则作后续处理。该方法一方面能够继承C2均值聚类算法的优点, 可以灵活地用在基于多特征和多阈值的图像分割中, 另一方面充分考虑了图像的区域信息, 利用模糊熵最小作为准则, 对C2均值聚类算法初步分割结果的错分类点作了进一步的处理, 克服了C2均值聚类算法对噪声敏感的缺点。实验结果表明,本文方法在运算开销上只比C2均值聚类算法多4~ 6 s, 对于低信噪比的图像能够取得优于C2
KmeansImageSegmentation
- 基于Opencv实现的k-means聚类图像分割算法,可自定义聚类个数,根据像素点的位置和颜色进行聚类
segmentation
- 介绍了视觉颜色空间及其在交互式图像分割中的作用, 实验分析了它的奇异性, 在此基础上, 考虑像素的 空间和色彩分布, 提出了基于区域生长法的多颜色空间、 多度量准则的聚类算法和零碎区域的合并算法, 颜色空间选取HSL 和RGB 两种, 相似性度量包括了种子点、 扩张点和生长区域三个方面, 并用于敦煌壁画图像的分割.
基于Mean Shift的阈值分割
- 阈值分割算法是一种将灰度图像转化为二值图像的简单有效的方法,但是由于需处理图像的复杂性,常常使得阈值分割算法中阈值的选取问题无法很好解决。针对这个问题,在进行阈值化处理之前,我们先借助Mean Shift算法的分割特性将灰度值相近的元素进行聚类,然后,在此基础上应用阈值分割算法,达到将图像与背景分离的目的。 简单来说,基于Mean Shift的图像分割过程就是首先利用Mean Shift算法对图像中的像素进行聚类,即把收敛到同一点的起始点归为一类,然后把这一类的标号赋给这些起始点,同时把包含像素
fcm
- 介绍几种模糊c均值聚类算法,利用该算法进行点云以及图像的分割。-fuzzy c means clustering
ClusterAnalysis
- 现在我们给定两幅ALV路标的捕捉图像,我们实际工作中首先要捕获路标(这里我们假定环境中已经有路标),而此时的景象是难以预知的:我们不知道路标在什么位置、是什么路标、除了路标还有那些图像模式? 基本要求:使用本章学习的K-平均算法,以颜色分量(或几何性状)作为坐标参数,对景象图进行聚类分析,要求最后的分类结果将路标(可能包括少量相似区域)聚类为一个模式类别。试验报告同前面一样,要求给出样本模式点,绘制坐标图(标出各个聚类中心的迭代移动轨迹) ,绘制算法框图,给出结论。并检查上机结果。 -e
Kmeans
- 基于Kmeans算法的图像分割,一般Kmeans是数据挖掘中用来聚类的,本试验利用图像中的灰度值作为Kmeans算法的原始点,进行图像分割-Kmeans algorithm based on image segmentation, data mining in general Kmeans is used to clustering, the trial use of the image gray value as the original algorithm Kmeans spots for
HoughTrans
- Hough变换的实质是将图像空间内具有一定关系的像元进行聚类,寻找能把这些像元用某一解析形式联系起来的参数空间累积对应点。在参数空间不超过二维的情况下, 这种变换有着理想的效果。但是,一旦参数空间增大,计算量便会急剧上升,同时耗费巨大的存储空间,耗时也随之猛增。就此,多年来国内外众多学者针对具体情况对常规Hough变换进行了多方面的探索,并提出了许多有价值的改进方法。-Hough transform is essentially the image space has a certain rel
K
- K均值算法-分类器-有效抑制边缘点影响-简单有效-K-means algorithm- Classifier- effectively inhibiting the impact of edge points- simple and effective
kmean
- c#下实现图像颜色k均值聚类 将像素点颜色分类并合并-c# implementation of color image k-means clustering to classification of color pixels and merge
im_MSfilter
- 基于Mean Shift的图像分割过程就是首先利用Mean Shift算法对图像中的像素进行聚类,即把收敛到同一点的起始点归为一类,然后把这一类的标号赋给这些起始点,同时把包含像素点太少的类去掉。然后,采用阈值化分割的方法对图像进行二值化处理 -Mean Shift Based on the process of image segmentation is the first to use the image Mean Shift algorithm for clustering of pixe
example-template
- K-means聚类算法的实现,可以实现对图像色彩块进行分类,是一个不错的算法,就是处理起来慢了点-K-means clustering algorithm can be achieved color image block classification algorithm is a good means to deal with the point of slow
Cluster
- 此程序的功能是实现对图像的聚类分析,通过提取图像中不同的特征,实现聚类,将图像中的各像素点划分到不同的类中。-This program' s function is to achieve the image of the cluster analysis, different by extracting image features, to implement clustering, the image of the pixels assigned to different classes
Harris
- 研究一种红外医学图像处理与分析方法,实现红外人脸图像中特征区域的自动定位。方法 针对红外正面脸部图像,采用一种无监督的局部和全局的特征提取方法,首先通过阈值法区分出前景和 背景,并根据面部特征对称性在前景中确定鼻区 然后在面部确定一个包含所有特征的矩形区域,利用 Harris算子在该区域检测出角点,并找出这些点的局部最大值点 最后用K-means方法对这些点进行 聚类 -To develop an mi age analyzing procedure forautomatic
MARK_Kmeans
- 使用k-means算法对一副RGB色彩空间的图像作简单的聚类。根据命令行提示输入聚类的大小K,程序自动计算每一个像素点的归属并着色该点为该类的色彩均值。工程运行于VS2008环境,需要OpenCV支持。Debug目下exe文件可以直接双击运行查看结果。-Using k-means algorithm on an RGB color space images to make a simple clustering. According to the command prompt enter the
ZPclustering
- 实现点的聚类,并用做图像分割,来源是文章:Self-Tuning Spectral Clustering (作者: Lihi Zelnik-Manor, Pietro Perona )(point clustering and image segmentation, algorithm is from paper:Self-Tuning Spectral Clustering(author: Lihi Zelnik-Manor, Pietro Perona ))
AP聚类
- AP聚类算法是基于数据点间的"信息传递"的一种聚类算法。与k-均值算法或k中心点算法不同,AP算法不需要在运行算法之前确定聚类的个数。(AP clustering algorithm is a kind of clustering algorithm based on "information transfer" between data points. Unlike the k- mean algorithm or the k center point