搜索资源列表
CVMFC
- 基于MFC的opencv中常见的图像处理算法整理-Opencv on MFC' s common image processing algorithms in the whole
jiaocheng
- 在MFC中使用OpenCV(OpenCV教程_基础篇。2.8节例子程序)全过程都有,最初学者很有帮助-In MFC using OpenCV (OpenCV tutorial _ Basics 2.8 example program) and the whole process has the most helpful for beginners
siftmatch
- SIFT从特征提取到匹配完成的整个过程,已经修改好完全可以在vs2010上运行,c++版本的-SIFT extracted from the feature match to complete the whole process has been modified can run in vs2010 c++ version
water_cheti
- 8.4 水域分割 水域分割,又称watershed变换,是模仿地形图浸没过程的一种形态学分割算法,其本质是利用图像的区域特征来分割图像的,它将边缘检测与区域成长的优点结合起来,能够得到单像素的,连通的,封闭的,并且位置准确的轮廓。因此是应用比较广泛的一种图像分割算法。 -Image Watershed Segmentation This is the implementation of the algorithm based on immersion model.
Codebook_model
- Codebook model 视频抠像 xp sp3 + vs2005 + OpenCV 2.3.1-For a more detailed explanation of a “codebook” model refer to [reference: Gary Bradski and Adrian Kaehler: Learning Opencv, September 2008: First Edition. p. 278]. During the application of the
Face-Detection-ren-lian-jian-ce
- 目标跟踪,利用相邻两帧的区域匹配从图像序列中建立目标链,跟踪目标从进入监视范围到驶离监视范围的整个过程-Target tracking, the use of two adjacent frames matching goal of establishing regional chain from an image sequence, tracking targets range from entering the monitor to monitor the whole process of
harris_guass
- 自己利用高斯函数编写的harris焦点检测程序,可运行。整个程序是基于opencv的cvmat类编写的,但是没有直接调用opencv的内置函数-Own Gaussian function written harris focus detection program can be run. The whole program is based on opencv cvmat class preparation, but there is no direct call to the built-in
caffe_src_LandMark(5pt)_vs2013
- 是github上的开源的人脸关键点定位,5点。用vs2013编译,我把整个依赖打包,因此你可以直接编译-The key point is the human face of the open source positioned on github, 5:00. With vs2013 compiler, I rely on the whole package, so you can compile
pai
- 九张机,大曲,在《乐府雅词》中有两词,并收录入《钦定词谱》,有据可依的仅有此两词。 此体有两种格式,一种为前后有口号,整曲共十一首。一种为前后无口号整曲有九首。有口号者,为正格。 后人多有效仿,而很多格律不端,因《乐府雅词》仅收录两首,故格律无别所效。(Nine machines, two words in Daqu, "Yuefu elegance", and recorded "James poems", according to the only t
SALICY
- 显著性检验(significance test)就是事先对总体(随机变量)的参数或总体分布形式做出一个假设,然后利用样本信息来判断这个假设(备择假设)是否合理,即判断总体的真实情况与原假设是否有显著性差异。或者说,显著性检验要判断样本与我们对总体所做的假设之间的差异是纯属机会变异,还是由我们所做的假设与总体真实情况之间不一致所引起的。 显著性检验是针对我们对总体所做的假设做检验,其原理就是“小概率事件实际不可能性原理”来接受或否定假设。 抽样实验会产生抽样误差,对实验资料进行比较分析时,不能仅凭
Saliency
- 显著性检验(significance test)就是事先对总体(随机变量)的参数或总体分布形式做出一个假设,然后利用样本信息来判断这个假设(备择假设)是否合理,即判断总体的真实情况与原假设是否有显著性差异。或者说,显著性检验要判断样本与我们对总体所做的假设之间的差异是纯属机会变异,还是由我们所做的假设与总体真实情况之间不一致所引起的。 显著性检验是针对我们对总体所做的假设做检验,其原理就是“小概率事件实际不可能性原理”来接受或否定假设。(difference between the signif