搜索资源列表
PID Example--Inverted Pendulum
- The cart with an inverted pendulum, shown below, is \"bumped\" with an impulse force, F. Determine the dynamic equations of motion for the system, and lin earize about the pendulum s angle, theta = Pi (in other words, assume that p endulum does
chinapi_demo
- 这些是我特地制作的分布式计算的示例程序,仅供各位相关开发人员参考使用 本作以ChinaPI的第一个内部测试版作为蓝本修改而成,旨在提高中国分布式计算的设计水平 架构完整,包含除安全组件的其他重要组件(为了突出分布式计算和ChinaPI的安全,各个组件均进行了简化) 对PI的计算使用BBP公式(计算核心部分并非重点,写得比较乱) 为了通俗易懂,使用VB6.0编写 文档并非标准文档,只是示意性的 相关源码及文档可以经修改后再发行,但须遵循以下条款: 1、源码及
PI
- 利用布丰投针的思想,用数值随机算法估计计算PI的值。-Buffon' s needle to use for thought, random algorithm is estimated by numerical calculation of the value of PI.
electromagneticwaveTE13
- 利用matlab仿真金属圆柱体内电磁波分布,有助于掌握电磁波的传播情况。 把程序文档放入matlab的默认读取文档中,打开Cwave.m。Cwave.m是演示程序,由它调用其它函数。其中Z表示Kz*z,范围为0~2*pi。默认取2*pi为一个周期,num表示在一个周期内平均取多少个Kz*z值,默认为50(计算后每个值如Er都有五十幅图)。CWaveGuideCaculate函数用于计算Er,Efia,Hr,Hfia,Hz等值。CWaveGuideShow用于三维显示计算后得到的值,可以比较生
Pi
- 用Visual C++开发的图形化圆周率Pi计算程序,共有“反正切 级数展开”、“反正弦级数展开”、“Marchin公式”、“Shank s公式”和“Gauss公式”五种方法可供选择。-Using Visual C++ development of graphical Pi pi calculation program, a total of " arctangent series expansion," " arcsine Series" , &quo
CPP_Make_the_to_calculate
- 利用以下公式,计算 PI 至小数点后s位 oo --- n L * PI \ (-1) 4 * L L -------- = / [ ------- ( ---------- - -------------- ) ] 4 --- 2n+1 5^(2n+1) 239^(2n+1) n=0 L : 为一大整数 10^s PI : 圆周率-Using the following formula to calculate PI to s
orbita_sunsync
- Orbita.m Programa para dibujar un periodo de la orbita de un satélite apartir de los parámetros orbitales Programado a partir de la hoja TUNDRA2.pdf Ramon Martínez, 20-12-2006 Parámetros k=398613.52 en (km^3)/(s^2) Re = 6377 km
ForcedPendulum
- This simulink model simulates the damped driven pendulum, showing it s chaotic motion. theta = angle of pendulum omega = (d/dt)theta = angular velocity Gamma(t) = gcos(phi) = Force omega_d = (d/dt) phi Gamma(t) = (d/dt)omega + omega/Q
publicationdtl
- S u r f e r自动控制技术在气象资料 自动成图中的应用 -Ab s t r a c t : The ma i n f un c t i o n s o f Su r fe r s o f t wa r e,Ac t i v e X a u t o ma t i o n t e c h ni q ue a nd t he i n t e r fa c e o f VB a p p l i c a t i o n a n d S u r
xiaobofenxi
- 小波工程主要包括一两部分:一、连续小波分析的应用,二、离散小波分析的应用。下面分两个部分分别说明这两个程序的分析结果: 一、连续小波分析: 所用信号为自己构造的三角波和正弦波叠加的信号:s=(-1).^(floor(n/50)+1).*(mod(n,50)-25)*2-(-1).^(floor(n/17)+1).*(mod(n,17)-8.5)*3+1*cos(n/2)*10。其中第一项(-1).^(floor(n/50)+1).*(mod(n,50)-25)*2为一周
zn01
- 用Ziegler--Nichols整定公式来求P,PI,PID的个参数,其中Gc是校正器的传递函数,kp为比例系数, Ti为积分时间常数,Td为微分时间常数,输入参量vars为带迟滞--惯性环节模型的KT τ-With Ziegler- Nichols tuning formula to seek P, PI, PID' s parameters, which Gc is the corrector transfer function, kp is proportional coeffic
zn02
- 用稳定边界法整定公式来求P,PI,PID的个参数,其中G是已知被校正系统的开环传递函数,kp为比例系数, Ti为积分时间常数,Td为微分时间常数,输入参量Gc为校正器传递函数,p为系统开环极点的个数(不计重根个数,即多重根只计一个根)-With the Stable Boundary tuning formula seeking P, PI, PID' s parameters, of which G is known to be corrected and the system of o
inmin01
- 用积分最小值准则来求P,PI,PID的个参数,其中Gc是校正器的传递函数,kp为比例系数, Ti为积分时间常数,Td为微分时间常数,输入参量vars为带迟滞--惯性环节模型的[K T τ],已知参数k=vars(1);T=vars(2);ι=vars(3),iC=vars(4) -Minimum criteria of integral seeking P, PI, PID' s parameters, which Gc is the corrector transfer function
cc01
- 用Cohen--Coon整定公式来求P,PI,PID的个参数,其中Gc是校正器的传递函数,kp为比例系数, Ti为积分时间常数,Td为微分时间常数,输入参量vars为带迟滞--惯性环节模型的KT τ 输入参量vars为带迟滞--惯性环节的K T ι,已知参数k=vars(1);T=vars(2);ι=vars(3)。-With Cohen- Coon tuning formula to seek P, PI, PID' s parameters, which Gc is the corre
mini2
- clear all clc t=0:1/1000:10-1/1000 s=sin(2*pi*t) snr=20 s_power=var(s) varience of s linear_snr=10^(snr/10) factor=sqrt(s_power/linear_snr) noise=randn(1,length(s))*factor x=s+noise Ó É SNR¼ Æ Ë ã
buffon
- 蒲丰投针的Matlab源程序,返回的结果是Pi的近似。-buffoncalc(m) performs m iterations of Buffon s needle experiment and returns the thus calculated approximation of \pi.
012006014825
- 作等距分划,Xi=-5+ih,h=10/n,i=0,1,……,n,并对Runge给出的函数y=1/(1+x2)作Lagrange插值,取n=10,20计算插值多项式Pn(x)在x=4.8处的误差,并作分析 用Romberg外推法计算圆周率Π=∫4/(1+X2)dx,要求绝对误差限小于0.5×10-8-For the equidistant partition, Xi =- 5+ ih, h = 10/n, i = 0,1, ... ..., n, and Runge' s functi
fit_ML_maxwell
- fit_ML_normal - Maximum Likelihood fit of the log-normal distribution of i.i.d. samples!. Given the samples of a log-normal distribution, the PDF parameter is found fits data to the probability of the form: p(x) = sqrt(1/(2*pi))/(s*x)*
pgpi
- PGPI(NUM,DEN,W,FI,A) plots the stability boundary locus L(KP,KI,W)in the (KP,KI)-plane for an LTI system with transfer function defined by its NUM, DEN coefficients and driven by a PI controller with transfer function, C(s)=kp+(ki/s). Frequency (W) g
osBank
- 3、银行家算法 设request:是Pi进程的请求向量,当Pi发了资源请求后,系统按下述步骤检查: (1)如果Request[i]<= Need[i],则转向步骤(2); (2)若Request[i] <=Available,则转向步骤(3); (3)系统试探性地把要求的资源分配给进程Pi,并修改以下数据结构的值: Available=Available-Request[i]; Allocation[i]= Allocation[i]+ Request[i];