搜索资源列表
2D CUDA-based bilinear interpolation
- This MEX performs 2d bilinear interpolation using an NVIDIA graphics chipset. To compile and run this software, one needs the NVIDIA CUDA Toolkit (http://www.nvidia.com/object/cuda_get.html) and, of course, an NVIDIA graphics card of reasonably moder
cuSVMVCcode
- 基于GPU计算的SVM,VC++源码,包括详细文档说明文件。借用了GPU编程的优势,该代码据作者说比常规的libsvm等算法包的训练速度快13-73倍,预测速度快22-172倍。希望对大家有用-cuSVM is a software package for high-speed (Gaussian-kernelized) Support Vector Machine training and prediction that exploits the massively parallel proc
GPU-Gems3
- 给出了GPU的最新快照,详细描述了当今最新的GPU的内部架构,以及如何利用GPU的编程技巧。另外额外探讨了如何利用GPU的计算能力完成其他计算任务(CUDA)。-This third volume of the best-selling GPU Gems series provides a snapshot of today s latest Graphics Processing Unit (GPU) programming techniques. The programmability of
spmv_csr
- 稀疏矩阵的DIA/ELLPACK/COO/CSR/HYB表示形式,以及各表示形式下的稀疏矩阵乘法(稀疏大矩阵*矢量)的CUDA实现。对于矩阵中每一行稀疏元素个数较统一的情况,ELLPACK表示最佳,其次是HYB(ELL+COO)。 CUDA™ 是一种由NVIDIA推出的通用并行计算架构,该架构使GPU能够解决复杂的计算问题。 它包含了CUDA指令集架构(ISA)以及GPU内部的并行计算引擎。 开发人员现在可以使用C语言来为CUDA™ 架构编写程序-Sparse matri
LBM-C-0.1
- LBM-C is a lattice Boltzmann 2D and 3D fluid flow solver implemented using nVidia s CUDA platform. LBM-C is written in CUDA C and is licensed under GPL v2, you are invited to use, alter and improve upon LBM-C at your own discretion.
CUDA-convnet
- HINTON的学生alex写的有关深度学习的图像分类上在cuda上的实现-Image classification HINTON alex students wrote about the depth of learning implemented on cuda' s
FDTD-Mur-CUDA-master
- 基于CUDA的FDTD模拟二维TM波在真空中的传播,基于Mur边界条件(FDTD-Mur-CUDA ============= 2D FDTD solution for Mur's Absorbing Boundary Condition using CUDA acceleration.)