搜索资源列表
FPtree
- 关联规则挖掘算法FPtree的源代码,是一种不必产生候选集的关联规则挖掘算法-association rule mining algorithm FPtree of source code, is a candidate need not have a set of association rules mining algorithm
candidate-elimination
- 机器学习经典算法,候选删除算法,完全可以编译通过-Machine learning, candidate-elimination algorithm
Apriori
- Apriori算法的实现,包括候选生成,裁减以及生成封闭的平凡项集。-Apriori algorithm, including candidate generation, reduction and generation of closed itemsets extraordinary.
houxuan
- 现代机器学习中的候选消除算法,可从有限个样本中搜索出最优结果,更适用于样本较少的情况-Candidate Elimination Algorithm
1
- We present a genetic algorithm which is distributed in two novel ways: along genotype and temporal axes. Our algo- rithm fi rst distributes, for every member of the population, a subset of the genotype to each network node, rather than a
nearestneighbour
- Compute nearest neighbours (by Euclidean distance) to a set of points of interest from a set of candidate points. The points of interest can be specified as either a matrix of points (as columns) or indices into the matrix of candidate points.
AprioriMain
- 此算法实现了基本的Apriori算法,效率很低. 过程是:先通过对数据集进行扫描,得到候选1-项集C1,根据用户输入的最小支持度筛选出频繁1-项集L1,将筛选中 不满足条件的结果放入一个先验项集,然后对L1进行组合,并根据Apriori算法的先验原理,用每个组合的结果和先 验项集中的所有元素进行比较,如果组合结果的子集中包含先验集中的任何一个元组就将其排除,将没有被排除 的组合结果放入C2.如此循环反复,直到Cn或Ln为空. 2008.11.1-2008.11.3
MATLAB
- 遗传算法(Genetic Algorithm)是模拟达尔文生物进化论的自然选择和遗传学机理的生物进化过程的计算模型,是一种通过模拟自然进化过程搜索最优解的方法,它最初由美国Michigan大学J.Holland教授于1975年首先提出来的,并出版了颇有影响的专著《Adaptation in Natural and Artificial Systems》,GA这个名称才逐渐为人所知,J.Holland教授所提出的GA通常为简单遗传算法(SGA)。 -In artificial intellig
Multi-Agent-Particle-Swarm-Algorithm
- 结合多智能体的学习、协调策略及粒子群算法,提出了一种基于多智能体粒子群优化的配电网络重构方法。该方法采用粒子群算法的拓扑结构来构建多智能体的体系结构,在多智能体系统中,每一个粒子作为一个智能体,通过与邻域的智能体竞争、合作。能够更快、更精确地收敛到全局最优解。粒子的更新规则减少了算法不可行解的产生,提高了算法效率。实验结果表明,该方法具有很高的搜索效率和寻优性能。-Combining the study of multi-agent technology,coordinating strateg
Apriori
- Apriori算法C++实现,Apriori算法是一种挖掘关联规则的频繁项集算法,其核心思想是通过候选集生成和情节的向下封闭检测两个阶段来挖掘频繁项集-Apriori algorithm C++ realize, Apriori algorithm is an association rule mining frequent itemsets algorithm, the core idea is the frequent item sets through a two-stage closed
Apriorisrc
- Apriori算法是一种挖掘关联规则的频繁项集算法,其核心思想是通过候选集生成和情节的向下封闭检测两个阶段来挖掘频繁项集。而且算法已经被广泛的应用到商业、网络安全等各个领域。-Apriori algorithm is an association rule mining frequent itemsets algorithm, the core idea is to dig down through the closed itemsets candidate sets generated in
ASForTSP(candidateLists)
- 蚂蚁算法使用候选列表求解TSP,候选列表队搜索效率有很大贡献,采用的候选列表采用基于三角划分,最后结果很好。-Ant algorithm uses the candidate list for solving TSP, the list of candidates has contributed much to the team search for efficiency, using a list of candidates based on triangulation, the final
ACSForTSP(parallelPcandidateLists)
- 蚁群系统算法求解旅行商问题,其中使用了基于领域、基于三角剖分和最小生成树的候选列表,并进行了比较。-Ant Colony System for solving traveling salesman problem, in which a field-based, based on triangulation and the minimum spanning tree of the candidate list, and compared.
遗传算法
- 遗传算法是计算数学中用于解决最佳化的搜索算法,是进化算法的一种。进化算法最初是借鉴了进化生物学中的一些现象而发展起来的,这些现象包括遗传、突变、自然选择以及杂交等。遗传算法通常实现方式为一种计算机模拟。对于一个最优化问题,一定数量的候选解(称为个体)的抽象表示(称为染色体)的种群向更好的解进化。传统上,解用二进制表示(即0和1的串),但也可以用其他表示方法。进化从完全随机个体的种群开始,之后一代一代发生。在每一代中,整个种群的适应度被评价,从当前种群中随机地选择多个个体(基于它们的适应度),通过
tree
- 分类决策树的核心思想就是在一个数据集中找到一个最优特征,然后从这个特征的选值中找一个最优候选值,根据这个最优候选值将数据集分为两个子数据集,然后递归上述操作,直到满足指定条件为止。附代码(The core idea of a classified decision tree is to find an optimal feature in a data set, and then find an optimal candidate value from the selected value of
深度学习mtcnn
- 用市面上的摄像头,可以实现实时人脸识别功能。(The algorithm model of facenet face recognition is obtained through deep learning, and the backbone network of feature extraction is concept-resnetv1, which is developed from concept network and RESNET, with more channels and n