搜索资源列表
LeNet
- 用于书写体数字识别的卷积神经网络,VC++源码,仅供学习参考-Convolutional Neural Networks in Handwritten Digit Recognition Visual C++ implemented.
[codes]LeNet-5
- 是matlab的代码,关于yann Lecun在89年提出的cnn的原型,这个代码成功应用于欧洲很多国家的手写支票识别-Is matlab code on cnn yann Lecun prototype made in 1989, this code successfully applied to handwriting recognition check many European countries
lenet5test
- 实现lanet卷积,进行手写体识别。数据源可以来自mnist-Achieve lenet convolution, handwritten recognition. The data source can come mnist
CNNs
- lr.py是用python实现了逻辑回归的源代码,并附带有注释。mlp.py是用python实现了多层感知机的源代码,并附带有注释。LeNetConvPoolLayer.py是用python实现了LeNet网络,并附带有注释。该文件需要引用mlp.py。-lr.py is python source code achieving a logistic regression , along with comments. mlp.py realized MLP by python, along wi
Deeplearn Toolbox(CNN)
- 基于lenet-5模型,利用CNN进行图像分类(Image classification)
lenet_test
- 包含mnist数据集的lenet例子,快速训练部分数据,达到85%的准确率(A lenet example that contains the MNIST dataset to quickly train part of the data to reach a 85% accuracy rate)
matlab实现LeNet
- 卷积神经网络LeNet代码,可实现图片分类(Convolution neural network code)
LeNet神经网络
- 程序主要包括三个部分:mnist_.inference.py、mnist.train.py和mnist.test.py。mnist.inference.py主要定义前向传播的过程以及神经网络中的参数;mnist.train.py定义了LeNet-5模型的训练过程,并保存训练结束后的最终的模型(持久化);mnist.test.py中对测试数据进行测试,计算LeNet模型在MNIST测试集的正确率。
Mine_CNN_MNIST
- 深度学习的部分经典模型,tensorflow1.4,python3.5,有AlexNet,LeNet等(Part of the classic model of deep learning, tensorflow1.4, python3.5, with AlexNet, LeNet, etc.)
LeNet
- 本文档是LeNet的源代码,主要用于迁移学习,当然可以进行相应的调整和改进,使得性能更加优越。(This document is the source code of LeNet, which is mainly used for migration learning. Of course, corresponding adjustments and improvements can be made to make the performance more superior.)
MATLAB-LeNet5-master
- 手写体识别 lenet5 LeNet5由7层CNN(不包含输入层)组成,上图中输入的原始图像大小是32×32像素,卷积层用Ci表示,子采样层(pooling,池化)用Si表示,全连接层用Fi表示。下面逐层介绍其作用和示意图上方的数字含义。(Lenet5 is composed of seven layers of CNN)
CNN
- 卷积神经网络分类 调制信号识别 卷积神经网络(Convolutional Neural Networks, CNN)是一类包含卷积计算且具有深度结构的前馈神经网络(Feedforward Neural Networks),是深度学习(deep learning)的代表算法之一 [1-2] 。卷积神经网络具有表征学习(representation learning)能力,能够按其阶层结构对输入信息进行平移不变分类(shift-invariant classification),因此也被称