搜索资源列表
模拟退火源码
- 模拟退火算法 模拟退火算法(Simulated Annealing,简称SA算法)是模拟加热熔化的金属的退火过程,来寻找全局最优解的有效方法之一。 模拟退火的基本思想和步骤如下: 设S={s1,s2,…,sn}为所有可能的状态所构成的集合, f:S—R为非负代价函数,即优化问题抽象如下: 寻找s*∈S,使得f(s*)=min f(si) 任意si∈S (1)给定一较高初始温度T,随机产生初始状态S (2)按一定方式,对当前状态作随机扰动,产生一个新的状态S’ S’=S+sign(η).δ 其中δ
1-s2.0-S1007021411700050-main
- 一种基于神经网络的火灾探测方法检测信息开发利用温度,烟密度、CO浓度测定三个代表火的可能性条件。 下载后,觉得文章不错,大家可以看一下。-A neural network fire detection method was developed using detection nformation for temperature, smoke density, and CO concentration to determine the probability of three repres
1-s2.0-S1877705811020625-main
- An Improved Page Rank Method based on Genetic Algorithm for Web Search
1-s2.0-S1875389212003264-main
- 基于适应反馈控制的一类混沌系统的稳定控制-Stabilizing a Class of Chaotic Systems by Using Adaptive Feedback Control
s2
- 基于KL变换的特征提取 用KL变换进行模式识别 -KL transform pattern recognition based on KL transform feature extraction
1-s2.0-S0893608014002135-main
- 2015年最新的深度学习综述文献,对目前深度学习的发展和主要问题进行了深入全面的分析,对初涉深度学习和从事相关研究的同学有较大帮助。-2015 new depth study literature review, the main problem of the current development and depth of learning in-depth and comprehensive analysis of the depth of learning and new entrants
1-s2.0-S0925231213009909-main
- 一种改进型的新型极限学习机meta-elm,在训练效率上有很大提升-meta extrem learning machine
NN_tutorial
- 人工神经网络是深度学习的基础,并在图像识别上应用非常多。本代码内容是一个经典的BP网络,S1和S2分别表示中间层和输出层的神经元个数,学习3幅不同类型的图像并输出。-Artificial neural networks are the basis of deep learning and are used in image recognition. The contents of this code is a classic BP network, S1 and S2, respectively
1-s2.0-S1877050916315502-main
- Learning Vector Quantization Neural Network Based External Fault Diagnosis Model for Three Phase Induction Motor Using Current Signature Analysis
1-s2.0-S0306261917313399-main.pdf
- A holarchic approach for multi-scale distributed energy system optimisation