搜索资源列表
SVM.SVM支持向量机的时间序列预测
- SVM支持向量机的时间序列预测、分类、自回归代码,SVM
svm-km.rar
- 支持向量机(SVM)是数据挖掘中的一个新方法,能非常成功地处理回归问题(时间序列分析)和模式识别(分类问题、判别分析)等诸多问题,并可推广于预测和综合评价等领域,因此可应用于理科、工科和管理等多种学科。目前国际上支持向量机在理论研究和实际应用两方面都正处于飞速发展阶段。它广泛的应用于统计分类以及回归分析中. 支持向量机属于一般化线性分类器.他们也可以认为是提克洛夫规则化(Tikhonov Regularization)方法的一个特例.这族分类器的特点是他们能够同时最小化经验误差与最大化几何边缘区
SVM
- MATLAB中svm入门ppt介绍及程序实例介绍-Getting Started with MATLAB, and procedures of example to illustrate svm
SVM
- SVM分类的matlab源码实现。并提供一组数据进行仿真。-SVM classification matlab realization.
SVM
- 用matlab实现了SVM算法,并且对两类点进行了分类,给出了图形化的结果。-SVM algorithm is implemented using matlab, and two points on the classification, given the graphical result.
SVM
- 四种支持向量机SVM工具箱的分类与回归算法。MATLAB编写-Four types of support vector machine SVM toolbox classification and regression algorithm. MATLAB prepared
LS-SVM-toolbox
- 最新最小二乘支持向量机工具箱和使用说明,里面有详细的说明和实例-the latest LS-SVM toolbox for matlab
MATLA+svm
- 用MATLAB编写的svm源程序,可以实现支持向量机,用于特征分类或提取-SVM prepared using MATLAB source code, you can achieve the support vector machine for feature classification or extraction
SVM
- 应用于matlab支持向量机svm的工具箱-Applies to support vector machine SVM matlab toolbox
SVM
- matlab svm 分类程序,适合7.0以上的版本-matlab svm classification procedures suitable version 7.0 or above
svm
- SVM工具箱,matlab源程序,可以用于模式识别,图像识别多个方面-SVM Toolbox
svm
- svm的源程序,很简单的程序,易懂,非常实用-svm
SVM
- 基于支持向量机SVM的matlab仿真与应用-SVM based on support vector machine with the matlab simulation application
svm
- svm is a classifier.SUPPORT VECTOR MACHINE is used for train and classify new datas based on training
svm
- SVM源代码程序,包含了SVM的各个子模块-SVM source code program, including the various sub-modules of the SVM
SVM
- 在matlab的环境中,根据各种算法提取到的信息来输入SVM分类器中进行训练-classify different various sorts of information in svm
SVM
- 支持向量机(SVM)实现的分类算法源码[matlab]-Support Vector Machine (SVM) classification algorithm to achieve source [matlab]
svm
- this code provide to understanding SVM
SVM
- In this paper, we show how support vector machine (SVM) can be employed as a powerful tool for $k$-nearest neighbor (kNN) classifier. A novel multi-class dimensionality reduction approach, Discriminant Analysis via Support Vectors (SVDA), is in
SVM
- 基于SVM和混沌理论的关于水质预测的matlab仿真的程序,程序里面有详细的说明。是我的毕业设计,希望大家有用。-Based on SVM and Chaos Theory on the water quality prediction matlab simulation program, the program which are described in detail. Is my graduation project I hope you useful.