搜索资源列表
knn_java
- java写的k最邻近算法,是数据挖掘的基本算法之一。-Java write the k nearest neighbor algorithm, is one of the basic algorithm of data mining.
kNN
- KNN,k近邻算法,内附测试数据集,机器学习实战源码-KNN, k nearest neighbor algorithm, enclosing the test data set, machine learning practical source
KNN
- KNN算法,用于数据挖掘中数据离散化处理-K nearest neighbor classifier (K-NN) is widely discussed and applied in pattern recognition and machine learning
K-Nearest-Neighbor
- 数据挖掘中经典的KNN(K-最近邻)算法,导入即可运行-Data Mining the classical KNN (K- nearest neighbor) algorithm, you can import operation
mLknnMATLAB
- 本代码主要用了多标签K近邻方法(MLKNN)实现对多标签数据进行分类-This code mainly spent more than a label K-nearest neighbor method (MLKNN) to achieve the multi-label data classification
DM_BayesAndKNN
- C++实现数据挖掘的贝叶斯分类方法和k-近邻分类方法,有源码,有示例数据,有说明文档-C++ implementation of data mining methods and Bayesian classification k- nearest neighbor classification method, there is source code, sample data, documentation
KNN-implement-by-python
- 该程序是用python编写一个K近邻算法,通过该例子可以掌握K近邻算法,是学习数据挖掘的一个高效的算法。-The program is written in python a K-nearest neighbor algorithm, this example can grasp the K-nearest neighbor algorithm, a learning data mining and efficient algorithms.
kNN
- k近邻算法,可以简单准确的对数据,按照给定点与设定点的欧氏距离大小,进行分类-K nearest neighbor algorithm, can be simple and accurate data, in accordance with the set point to the point and the Euclidean distance of the set point size, classification
findKN
- 在数据挖掘、人工智能等领域中,都常用到KD树来进行K近邻查找。本程序是自己用C++实现的一个KD树来进行的K近邻查找程序,包含建树和查找。文件中附有测试文件。-In data mining, artificial intelligence and other areas, it is commonly used to KD tree to find K nearest neighbor. This procedure is K neighbor Finder C++ they used to a
knn
- 模式识别中的k近邻算法,经过测试,运行结果很好。 最小距离分类器 : 它将各类训练样本划分成若干子类,并在 每个子类中确定代表点 。测试样本的类别则以其与这些代表点距离最近作决策。该方法的缺点是所选择的代表点并不一定能很好地代表各类,其后果将使错误率增加。(The k nearest neighbor algorithm in pattern recognition has been tested and the result is very good. Minimum distance c
KNN01
- 用来作分类识别的KNN算法,非常好用非常好用(A very useful nearest neighbor algorithm)
PCA+mnist
- 基于python,利用主成分分析(PCA)和K近邻算法(KNN)在MNIST手写数据集上进行了分类。 经过PCA降维,最终的KNN在100维的特征空间实现了超过97%的分类精度。(Based on python, it uses principal component analysis (PCA) and K nearest neighbor algorithm (KNN) to classify on the MNIST handwritten data set. After PCA dime